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1. Introduction

Heterotic M -theory [1 – 3] offers a venue for finding phenomenolgically realistic vacua of the

heterotic string [4]. Although several different approaches are possible, see for example [5 –

7], the construction of non-standard embedded holomorphic vector bundles on elliptically

fibered Calabi-Yau threefolds [8 – 11] has proven to be particularly fruitful. Within this

context, one can explicitly compute the zero-mode spectrum using sheaf cohomology [12].

Chiral quark/lepton three family vacua with natural doublet-triplet Higgs splitting [13]

and no exotic quantum number fields are easily achieved. Generically, these also contain

both vector-like pairs of matter fields as well as several vector-like pairs of Higgs super-

fields. However, vacua can be constructed with no vector-like pairs of matter, of which a

substantial subset have at most two Higgs pairs [14, 15]. Furthermore, there are a small

number of such vacuum states with only one Higgs pair [16, 17]; that is, with exactly the

spectrum of the MSSM. We have called these “Heterotic Standard Models”.

Finding heterotic vacua with a spectrum either exactly, or close to, the MSSM is

just the beginning of the physical analysis. It is crucial that the perturbative cubic cou-

plings of the zero-mode fields, that is, the coupling of Higgs-Higgs conjugate fields to

moduli and the cubic Yukawa terms, lead to realistic µ-terms and fermion mass matrices

respectively. The texture of these couplings can be determined by evaluating the cubic

cohomology products using Leray spectral sequences [18 – 20]. It was shown that many

Heterotic Standard Models have naturally suppressed µ-terms and a realistic hierarchy of

physical masses. Furthermore, one must compute the non-perturbative string corrections

to the moduli superpotential so as to stabilize the vacuum. This has been carried out in a

series of papers [21, 22]. Having fixed the geometric and vector bundle moduli, it is possi-

ble, using both mathematical and numerical methods [23], to compute the explicit metrics

on the Calabi-Yau threefolds [24], the eigenspectra of bundle valued Laplacians on these

spaces [25] and, using these results, the explicit µ-term coefficients and Yukawa couplings.

This latter calculation is in progress.

It is of interest to note that it is substantially easier to find Heterotic Standard Models

with two Higgs-Higgs conjugate pairs than such vacua with only the single Higgs pair of the

MSSM. The reason is rooted in the associated algebraic geometry. At the end of the day,

it is less of a constraint to impose that there be two Higgs pairs and, hence, we find many

more such vacua. It is of relevance, therefore, to explore the physical properties of these

two Higgs pair Heterotic Standard Models and to exhibit vacua with reasonable physical

characteristics, such as a realistic fermion mass matrix. This will be carried out in this

paper. Using an extension of the methods presented in [12, 14 – 17], we construct a class

of heterotic M -theory vacua whose observable sector has the spectrum of the MSSM with

the addition of a second Higgs pair. There are no other vector-like pairs of fields or fields

with exotic quantum numbers. This two Higgs pair Heterotic Standard Model is shown to

have an acceptable hierarchical mass spectrum with a very light first family.

The addition of the second Higgs pair poses the serious problem of potentially gen-

erating large Higgs mediated flavor-changing neutral currents. Since a number of such

processes have strict experimental upper bounds, this concern must be addressed. We do
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that in this paper. First, we show that the “stringy”, so-called (p, q) and [s, t], selection

rules that arise from two Leray spectral sequences [19] disallow all matter couplings to the

second Higgs pair classically. That is, all classical flavor-changing neutral currents natu-

rally vanish. Such interactions can arise from the coupling of the zero-mode fields to the

massive Kaluza-Klein tower of states, but these neutral current interactions are of higher

order in the fields and, hence, are naturally suppressed. Using a non-supersymmetric two

Higgs doublet “toy” model, which none-the-less captures the relevant features of the two

Higgs pair supersymmetric vacuum, we show that the Higgs mediated flavor-changing neu-

tral currents generated by the second Higgs-Higgs conjugate pair sit comfortably below the

present experimental upper bounds. We briefly discuss a possible region of parameter space

where the two Higgs pair vacua could induce flavor-changing phenomena approaching the

experimental upper bound of some processes.

Specifically, we do the following. In section 2, we present the explicit elliptically fibered

Calabi-Yau threefold and SU(4) holomorphic vector bundle of our two Higgs pair vacua.

Using techniques introduced in [12, 14 – 17], the spectrum is shown to be precisely that of

the MSSM with the addition of a second Higgs-Higgs conjugate pair. We also compute the

number of geometric and vector bundle moduli; h1,1(X) = h2,1(X) = 3 and 13 respectively.

The texture of the cubic Yukawa terms in the superpotential is calculated in section 3.

These terms are shown to arise as the cubic product of the sheaf cohomology groups

associated to matter and Higgs-Higgs conjugate superfields. The internal properties of

these cohomologies under the (p, q) and [s, t] “stringy” symmetries induced by the two Leray

sequences are tabulated and shown to lead to explicit selection rules for these couplings.

The associated texture of the quark/lepton mass matrix is computed explicitly and found

to naturally have one light and two heavy families. Importantly, we show that the stringy

symmetries allow the coupling of left and right chiral matter to the first Higgs pair but

disallow a cubic coupling of matter to the second Higgs-Higgs conjugate superfields. Thus,

classically, these two Higgs pair Heterotic Standard Models have no flavor-changing neutral

currents. In section 4, a similar calculation is carried out for the cubic terms in the

superpotential involving a single vector bundle modulus with the Higgs-Higgs conjugate

pairs. The (p, q) and [s, t] symmetries of the associated sheaf cohomologies again induce

a texture on these couplings, allowing only 9 of the 13 vector bundle moduli to form such

couplings and restricting the Higgs content as well. This has important consequences for

the magnitude of the Higgs induced flavor-changing neutral currents.

A discussion of the superpotential, including a heavy Kaluza-Klein superfield and its

cubic coupling to two zero-mode fields, is given in section 5. It is shown that tree level su-

pergraphs involving the exchange of a Kalaza-Klein superfield can generate the coupling of

quark/lepton chiral matter to the second Higgs-Higgs conjugate pair, but only at dimension

4 in the superpotential. Hence, there is a natural suppression by a factor of 1/Mc, where

Mc is the compactification scale. Similarly, such supergraphs generate suppressed dimen-

sion 4 terms in the superpotential coupling all 13 vector bundle moduli to all Higgs pairs.

By requiring that these vacua have the correct scale of electroweak symmetry breaking,

one can put an upper bound on the size of the vector bundle moduli vacuum expectation

values and, hence, on the magnitude of the Yukawa couplings to the second Higgs-Higgs
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conjugate pair. Finally, in section 6, we represent the physics of our two Higgs pair vacua

in terms of a simplified model. This is essentially the non-supersymmetric standard model

with the addition of a second Higgs doublet and a real scalar field representing the 4 vector

bundle moduli disallowed from forming cubic couplings. The fact that chiral matter is

prevented classically from coupling to the second Higgs pair is enforced in the toy model

by a Z2 symmetry [26]. The scalar vacuum state closest to that of the standard model

is found and the associated Higgs and fermion masses and eigenstates computed. Using

these, we compute the interaction Langrangian for the Higgs mediated flavor-changing neu-

tral currents, constraining the coefficients of these interactions to be those determined in

section 5 in the supersymmetric string vacua. These interactions are compared with the

experimental upper bounds in several ∆F = 2 neutral meson processes [27, 28] and found

to be generically well below these bounds. However, by choosing certain parameters to be

of order unity, and for a sufficiently light neutral Higgs scalar, the flavor-changing neutral

current contributions to some meson processes can approach the upper bounds.

2. The two Higgs pair vacuum

We now specify, in more detail, the properties of these vacua with two Higgs-Higgs conju-

gate pairs and indicate how they are determined. The requisite Calabi-Yau threefold, X,

is constructed as follows [14]. Let X̃ be a simply connected Calabi-Yau threefold which

is an elliptic fibration over a rational elliptic surface, dP9. It was shown in [29] that X̃

factors into the fibered product X̃ = B1 ×P1 B2, where B1 and B2 are both dP9 surfaces.

Furthermore, X̃ is elliptically fibered with respect to each projection map πi : X̃ → Bi,

i = 1, 2. In a restricted region of their moduli space, such manifolds can be shown to admit

a Z3 × Z3 group action which is fixed-point free. It follows that

X =
X̃

Z3 × Z3
(2.1)

is a smooth Calabi-Yau threefold that is torus-fibered over a singular dP9 and has non-

trivial fundamental group

π1(X) = Z3 × Z3 , (2.2)

as desired. It was shown in [14] that X has

h1,1(X) = 3 , h2,1(X) = 3 (2.3)

Kahler and complex structure moduli respectively; that is, a total of 6 geometric moduli.

We now construct a holomorphic vector bundle, V, on X with structure group

G = SU(4) (2.4)

contained in the E8 of the observable sector. For this bundle to admit a gauge connection

satisfying the hermitian Yang-Mills equations, it must be slope-stable. The connection

spontaneously breaks the observable sector E8 gauge symmetry to

E8 −→ Spin(10) , (2.5)
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as desired. We produce V by building stable, holomorphic vector bundles Ṽ with structure

group SU(4) over X̃ that are equivariant under the action of Z3 × Z3. This is accomplished

by generalizing the method of “bundle extensions” introduced in [30]. The bundle V is then

given as

V =
Ṽ

Z3 × Z3
. (2.6)

Realistic particle physics phenomenology imposes additional constraints on Ṽ . Recall

that with respect to SU(4) × Spin(10) the adjoint representation of E8 decomposes as

248 =
(
1,45

)
⊕
(
4,16

)
⊕
(
4,16

)
⊕
(
6,10

)
⊕
(
15,1

)
. (2.7)

The low-energy spectrum arising from compactifying on X̃ with vector bundle Ṽ is deter-

mined from [12]

ker
(
∂
/

eV

)
=
(
H0
(
X̃,O eX

)
⊗ 45

)
⊕
(
H1
(
X̃, Ṽ ∗

)
⊗ 16

)

⊕
(
H1
(
X̃, Ṽ

)
⊗ 16

)
⊕
(
H1
(
X̃,∧2Ṽ

)
⊗ 10

)
⊕
(
H1
(
X̃, ad(Ṽ )

)
⊗ 1
)
, (2.8)

where ∂
/

eV
is the Dirac operator on X̃ twisted by Ṽ . The multiplicity of each representation

R of Spin(10) is the dimension of the associated cohomology space.

The number of 45 multiplets is given by

h0
(
X̃,O eX

)
= 1. (2.9)

Hence, there are Spin(10) gauge fields in the low-energy theory, but no adjoint Higgs

multiplets. The chiral families of quarks/leptons will descend from the excess of 16 over

16 representations. To ensure that there are three generations of quarks and leptons after

quotienting out Z3 × Z3, one must require that

n
16

− n16 =
1

2
c3
(
Ṽ
)

= −3 ·
∣∣Z3 × Z3

∣∣ = −27 , (2.10)

where n
16

, n16 are the numbers of 16 and 16 multiplets respectively, and c3(Ṽ ) is the

third Chern class of Ṽ . Furthermore, if we demand that there be no vector-like matter

fields arising from 16-16 pairs, Ṽ must be constrained so that

h1
(
X̃, Ṽ ∗

)
= 0 . (2.11)

Similarly, the number of 10 zero modes is h1
(
X̃,∧2Ṽ

)
. However, since the Higgs fields

arise from the decomposition of the 10, one must not set the associated cohomology to

zero.

In [16], it was shown that the minimal, non-vanishing number of 10 representations for

Ṽ satsifying equations (2.10) and (2.11) is h1
(
X̃,∧2Ṽ

)
= 4. A class of such bundles was

presented and shown to give rise to the exact MSSM spectrum at low-energy. In particular,

the spectrum had a single, vector-like pair of Higgs superfields. In this paper, we want to

enlarge the low-energy theory to include a second pair of Higgs fields. That is, we continue
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to constrain Ṽ to satsify eqs. (2.10) and (2.11), but enlarge h1
(
X̃,∧2Ṽ

)
. As we discuss

below, one class of bundles Ṽ leading to precisely two vector-like pairs of Higgs superfields

satsifies

h1
(
X̃,∧2Ṽ

)
= 10 . (2.12)

The bundles are similar to those presented in [16], differing essentially in one of the two

ideal sheaves involved in the construction.

We now present a stable vector bundle Ṽ satisfying constraints eqs. (2.10), (2.11)

and (2.12). This is constructed as an extension

0 −→ V1 −→ Ṽ −→ V2 −→ 0 (2.13)

of two rank 2 bundles, V1 and V2. Each of these is the tensor product of a line bundle with

a rank 2 bundle pulled back from a dP9 factor of X̃. Using the two projection maps, we

define

V1 = O eX
(−τ1 + τ2) ⊗ π1

∗(W1) , V2 = O eX
(τ1 − τ2) ⊗ π2

∗(W2) , (2.14)

where

span{τ1, τ2, φ} = H2(X̃,C)Z3×Z3 (2.15)

is the Z3 × Z3 invariant part of the Kahler moduli space. The two bundles, W1 on B1 and

W2 on B2, are constructed via an equivariant version of the Serre construction as

0 −→ χ2
2OB1

(−f1) −→W1 −→ χ2OB1
(f1) ⊗ IB1

3 −→ 0 (2.16)

and

0 −→ χ2
2OB2

(−f2) −→W2 −→ χ2OB2
(f2) ⊗ IB2

6 −→ 0 , (2.17)

where IB1

3 and IB2

6 denote ideal sheaves of 3 and 6 points in B1 and B2 respectively.

Characters χ1 and χ2 are third roots of unity which generate the first and second factors

of Z3 × Z3.
1

Note that V1, V2, W1, and W2 in eqs. (2.14), (2.16) and (2.17) respectively are con-

structed in the same manner as in [16]. Indeed, the line bundles O eX
(∓(τ1−τ2)) in eqs. (2.14)

and the ideal sheaf IB2

6 are taken to be identical to those in the exact MSSM case. However,

in order for ∧2Ṽ to satisfy condition eq. (2.12), the ideal sheaf IB1

3 must now be chosen

differently, as we now discuss.

Satisfying eq. (2.10) requires that one use ideal sheaves of 9 points in total. As in the

exact MSSM bundles [16], we continues to distribute these points into two different ideal

sheaves, IB1

3 and IB2

6 on B1 and B2 respectively. Furthermore, IB2

6 is chosen to be identical

to that in [16], namely, the ideal sheaf of the three fixed points of the second Z3 acting on

B2 taken with multiplicity 2. However, to obtain ∧2Ṽ satisfying eq. (2.12), we now modify

our choice of IB1

3 . Note that there are four different choices of Z3 ×Z3orbits of length 3 on

B1, and each gives a different ideal sheaf of 3 points. In [16], we took the three points to be

the fixed points of the second Z3, which are the singular points in the 3I1 Kodaira fibers.

1See [15, 16] for our notation for line bundles O eX
(· · · ), etc.
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To satisfy eq. (2.12), however, we now define IB1

3 using the three fixed points of the first

Z3 instead. These all lie on the non-degenerate T 2 fiber over 0 = [0 : 1] ⊂ P
1. This allows

one to obtain the MSSM spectrum with, additionally, a second pair of Higgs superfields.

We now extend the observable sector bundle V by adding a Wilson line, W , with

holonomy

Hol(W ) = Z3 × Z3 ⊂ Spin(10) . (2.18)

The associated gauge connection spontaneously breaks Spin(10) as

Spin(10) −→ SU(3)C × SU(2)L × U(1)Y × U(1)B−L , (2.19)

where SU(3)C × SU(2)L × U(1)Y is the standard model gauge group. Since Z3 × Z3 is

Abelian and rank
(
Spin(10)

)
= 5, an additional rank one factor must appear. For the

chosen embedding of Z3 × Z3, this is precisely the gauged B − L symmetry.

As discussed in [12], the zero mode spectrum of V⊕W on X is determined as follows.

Let R be a representation of Spin(10), and denote the associated tensor product bundle

of Ṽ by UR(Ṽ ). Then, each sheaf cohomology space H∗
(
X̃, U(Ṽ )R

)
carries a specific

representation of Z3 × Z3. Similarly, the Wilson line W manifests itself as a Z3 × Z3 group

action on each representation R of Spin(10). As discussed in detail in [15, 16], the low-

energy particle spectrum is given by

ker
(
∂
/

V

)
=
(
H0
(
X̃,O eX

)
⊗ 45

)Z3×Z3

⊕
(
H1
(
X̃, Ṽ ∗

)
⊗ 16

)Z3×Z3

⊕
(
H1
(
X̃, Ṽ

)
⊗ 16

)Z3×Z3

⊕
(
H1
(
X̃,∧2Ṽ

)
⊗ 10

)Z3×Z3

⊕
(
H1
(
X̃, ad(Ṽ )

)
⊗ 1
)Z3×Z3

,

(2.20)

where the superscript indicates the invariant subspace under the action of Z3 × Z3. The

invariant cohomology space
(
H0(X̃,O eX

) ⊗ 45
)Z3×Z3 corresponds to gauge superfields in

the low-energy spectrum carrying the adjoint representation of the gauge group SU(3)C ×
SU(2)L × U(1)Y × U(1)B−L. The matter cohomology spaces are

(
H1(X̃, Ṽ ∗) ⊗ 16

)Z3×Z3

,
(
H1(X̃, Ṽ ) ⊗ 16

)Z3×Z3

,
(
H1(X̃,∧2Ṽ ) ⊗ 10

)Z3×Z3

. (2.21)

First consider the 16 representation. It follows from eq. (2.11) that no such representa-

tions occur. Hence, no SU(3)C ×SU(2)L ×U(1)Y ×U(1)B−L fields arising from vector-like

16-16 pairs appear in the spectrum, as desired. Next, examine the 16 representation. The

constraints (2.10) and (2.11) imply that

h1
(
X̃, Ṽ

)
= 27 . (2.22)

One can calculate the Z3 × Z3 representation on H1
(
X̃, Ṽ

)
, as well as the Wilson line

action on 16. We find that

H1
(
X̃, Ṽ

)
= RG⊕3, (2.23)

where RG is the regular representation of G = Z3 × Z3 given by

RG = 1 ⊕ χ1 ⊕ χ2 ⊕ χ2
1 ⊕ χ2

2 ⊕ χ1χ2 ⊕ χ2
1χ2 ⊕ χ1χ

2
2 ⊕ χ2

1χ
2
2. (2.24)
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Furthermore, the Wilson line action can be chosen so that

16 =
[
χ1χ

2
2

(
3,2, 1, 1

)
⊕ χ2

2

(
1,1, 6, 3

)
⊕ χ2

1χ
2
2

(
3,1,−4,−1

)]
⊕

⊕
[(

1,2,−3,−3
)
⊕ χ2

1

(
3,1, 2,−1

)]
⊕ χ2

(
1,1, 0, 3

)
. (2.25)

Tensoring these together, we find that the invariant subspace
(
H1(X̃, Ṽ )⊗ 16

)Z3×Z3

con-

sists of three families of quarks and leptons, each family transforming as

Q =
(
3,2, 1, 1

)
, u =

(
3,1,−4,−1

)
, d =

(
3,1, 2,−1

)
(2.26)

and

L =
(
1,2,−3,−3

)
, e =

(
1,1, 6, 3

)
, ν =

(
1,1, 0, 3

)
(2.27)

under SU(3)C ×SU(2)L ×U(1)Y ×U(1)B−L. We have displayed the quantum numbers 3Y

and 3(B−L) for convenience. Note from eq. (2.27) that each family contains a right-handed

neutrino, as desired.

Next, consider the 10 representation. Recall from eq. (2.12) that h1
(
X̃,∧2Ṽ

)
= 10.

We find that the representation of Z3 × Z3 in H1
(
X̃,∧2Ṽ

)
is given by

H1
(
X̃,∧2Ṽ

)
= (χ1 + χ2

1 + χ2 + χ2
2)

⊕2 ⊕ χ1χ
2
2 ⊕ χ2

1χ2 . (2.28)

Furthermore, the Wilson line W action is

10 =
[
χ2

1

(
1,2, 3, 0

)
⊕ χ2

1χ
2
2

(
3,1,−2,−2

)]
⊕
[
χ1

(
1,2,−3, 0

)
⊕ χ1χ2

(
3,1, 2, 2

)]
. (2.29)

Tensoring these actions together, one finds that the invariant subspace of (H1
(
X̃,∧2Ṽ

)
⊗

10)Z3×Z3 consists of two vector-like pairs, each pair transforming as

Hk =
(
1,2, 3, 0

)
, H̄k =

(
1,2,−3, 0

)
, k = 1, 2. (2.30)

That is, there are two pairs of Higgs-Higgs conjugate fields occurring as zero modes of our

vacuum.

Finally, consider the 1 representation of the Spin(10) gauge group. It follows from (2.7),

the above discussion, and the fact that the Wilson line action on 1 is trivial that the num-

ber of 1 zero modes is given by the Z3 × Z3 invariant subspace of H1
(
X̃, ad(Ṽ )

)
, which is

denoted by H1
(
X̃, ad(Ṽ )

)Z3×Z3. Using the formalism developed in [18], we find that

h1
(
X̃, ad(Ṽ )

)Z3×Z3

= 13 (2.31)

That is, there are 13 vector bundle moduli.

Putting these results together, we conclude that the zero mode spectrum of the observ-

able sector has gauge group SU(3)C ×SU(2)L ×U(1)Y ×U(1)B−L, contains three families

of quarks and leptons each with a right-handed neutrino, has two Higgs-Higgs conjugate

pairs, and contains no exotic fields or additional vector-like pairs of multiplets of any kind.

Furthermore, there are 13 vector bundle moduli.
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3. Cubic Yukawa terms in the superpotential

We now focus on computing Yukawa terms. It follows from eq. (2.20) that the 4-dimensional

Higgs and quark/lepton fields correspond to certain ∂̄-closed (0, 1)-forms on X̃ with values

in the vector bundle ∧2Ṽ and Ṽ respectively. Since both pairs of Higgs and Higgs-conjugate

arise from the same cohomology space, we will denote any of these 1-forms simply as ΨH .

For the same reason, we schematically represent any quark/lepton doublet by Ψ(2) and any

singlet 1-form by Ψ(1), in any family. They can be written as

ΨH = ψH
ῑ[ab],dz̄

ῑ, Ψ(1) = ψ
(1)
ῑa ,dz̄

ῑ, Ψ(2) = ψ
(2)
ῑb ,dz̄

ῑ, (3.1)

where a, b are valued in the SU(4) bundle Ṽ and {zι, z̄ῑ} are coordinates on the Calabi-

Yau threefold X̃ . Doing the dimensional reduction of the 10-dimensional Lagrangian yields

cubic terms in the superpotential of the 4-dimensional effective action. It turns out [19]

that the coefficients of the cubic couplings are simply the various allowed ways to obtain a

number out of the forms ΨH , Ψ(1), Ψ(2). That is, schematically

W = · · · + λuQHu+ λdQH̄d+ λνLHν + λeLH̄e (3.2)

with the coefficients λ determined by

λ =

∫

eX

Ω ∧ Tr
[
Ψ(2) ∧ ΨH ∧ Ψ(1)

]
=

=

∫

eX

Ω ∧
(
ǫabcdψ

(2)
ῑa ψH

κ̄[bc] ψ
(1)
ǭd

)
dz̄ῑ ∧ dz̄κ̄ ∧ dz̄ǭ

(3.3)

and Ω is the holomorphic (3, 0)-form. Mathematically, we are using the wedge product

together with a contraction of the vector bundle indices (that is, the determinant ∧4Ṽ =

O eX
) to obtain a product

H1
(
X̃, Ṽ

)
⊗H1

(
X̃,∧2Ṽ

)
⊗H1

(
X̃, Ṽ

)
−→

−→ H3
(
X̃, Ṽ ⊗ ∧2Ṽ ⊗ Ṽ

)
−→ H3

(
X̃,O eX

)
, (3.4)

plus the fact that on the Calabi-Yau manifold X̃

H3
(
X̃,O eX

)
= H3

(
X̃,K eX

)
= H3,3

∂̄

(
X̃
)

= H6
(
X̃
)

(3.5)

can be integrated over. If one were to use the heterotic string with the “standard embed-

ding”, then the above product would simplify further to the intersection of certain cycles

in the Calabi-Yau threefold. However, in our case there is no such description.

Hence, to compute Yukawa terms, we must first analyze the cohomology groups

H1
(
X̃, Ṽ

)
, H1

(
X̃,∧2Ṽ

)
, H3

(
X̃,O eX

)
(3.6)

and the action of Z3 × Z3 on these spaces. We then have to evaluate the product in

eq. (3.4). As we will see in the following sections, the two independent elliptic fibrations

of X̃ will force some, but not all, products to vanish.
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3.1 The first elliptic fibration

3.1.1 The Leray spectral sequence

As discussed in detail in [15, 16, 18, 19], the cohomology spaces on X̃ are obtained by

using two Leray spectral sequences. In this section, we consider the first of these sequences

corresponding to the projection

X̃
π2−→ B2. (3.7)

For any sheaf F on X̃, the Leray spectral sequence tells us that

H i
(
X̃,F

)
=

p+q=i⊕

p,q

Hp
(
B2, R

qπ2∗F
)
, (3.8)

where the only non-vanishing entries are for p = 0, 1, 2 (since dimC(B2) = 2) and q = 0, 1

(since the fiber of X̃ is an elliptic curve, therefore of complex dimension one). Note that

the cohomologies Hp(B2, R
qπ2∗F) fill out the 2 × 3 tableau2

q=1 H0
(
B2, R

1π2∗F
)

H1
(
B2, R

1π2∗F
)

H2
(
B2, R

1π2∗F
)

q=0 H0
(
B2, π2∗F

)
H1
(
B2, π2∗F

)
H2
(
B2, π2∗F

)

p=0 p=1 p=2

⇒ Hp+q
(
X̃,F

)
, (3.9)

where “⇒ Hp+q
(
X̃,F

)
” reminds us of which cohomology group the tableau is computing.

Such tableaux are very useful in keeping track of the elements of Leray spectral sequences.

As is clear from eq. (3.8), the sum over the diagonals yields the desired cohomology of F .

In the following, it will be very helpful to define

Hp
(
B2, R

qπ2∗F
)
≡
(
p, q
∣∣F
)
. (3.10)

Using this abbreviation, the tableau eq. (3.9) reads

q=1
(
0, 1
∣∣F
) (

1, 1
∣∣F
) (

2, 1
∣∣F
)

q=0
(
0, 0
∣∣F
) (

1, 0
∣∣F
) (

2, 0
∣∣F
)

p=0 p=1 p=2

⇒ Hp+q
(
X̃,F

)
. (3.11)

On the level of differential forms, we can understand the Leray spectral sequence as

decomposing differential forms into the number p of legs in the direction of the base and

the number q of legs in the fiber direction. Obviously, this extra grading is preserved under

the wedge-product of the differential forms. Hence, any product

H i
(
X̃,F1

)
⊗Hj

(
X̃,F2

)
−→ H i+j

(
X̃,F1 ⊗F2

)
(3.12)

2Recall that the zero-th derived push-down is just the ordinary push-down, R
0
π2∗ = π2∗.
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not only has to end up in overall degree i+ j, but also has to preserve the (p, q)-grading.

That is,

(
p1, q1

∣∣F1

)
⊗

(
p2, q2

∣∣F2

)
//

(
p1 + p2, q1 + q2

∣∣F1 ⊗F2

)

Hp1+q1

(
X̃,F1

)∩
⊗ Hp2+q2

(
X̃,F2

)∩
// Hp1+p2+q1+q2

(
X̃,F1 ⊗F2

)
.

∩ (3.13)

This will be used in the following discussion.

3.1.2 The first leray decomposition of the volume form

Let us first discuss the (p, q) Leray tableau for the sheaf F = O eX
, which is the last term

in eq. (3.6). Since this is the trivial line bundle, it immediately follows that

q=1 0 0 1

q=0 1 0 0
p=0 p=1 p=2

⇒ Hp+q
(
X̃,O eX

)
. (3.14)

From eqs. (3.8) and (3.14) we see that

H3
(
X̃,O eX

)
=
(
2, 1
∣∣O eX

)
= 1, (3.15)

where the 1 indicates that H3(X̃,O eX
) is a one-dimensional space carrying the trivial action

of Z3 × Z3.

3.1.3 The first leray decomposition of Higgs fields

Now consider the (p, q) Leray tableau for the sheaf F = ∧2Ṽ , which is the second term in

eq. (3.6). This can be explicitly computed and is given by

q=1 χ2 ⊕ χ2
2

2(χ1 ⊕ χ2
1) ⊕ 2(χ2 ⊕ χ2

2)

⊕χ1χ
2
2 ⊕ χ2

1χ2
0

q=0 0
2(χ1 ⊕ χ2

1) ⊕ χ2 ⊕ χ2
2

⊕χ1χ
2
2 ⊕ χ2

1χ2
0

p=0 p=1 p=2

⇒ Hp+q
(
X̃,∧2Ṽ

)
. (3.16)

In general, it follows from eq. (3.11) that H1(X̃,∧2Ṽ ) is the sum of the entries on the first

diagonal,

H1
(
X̃,∧2Ṽ

)
=
(
0, 1
∣∣∧2Ṽ

)
⊕
(
1, 0
∣∣∧2Ṽ

)

= 2
(
χ1 ⊕ χ2

1 ⊕ χ2 ⊕ χ2
2

)
⊕ χ1χ

2
2 ⊕ χ2

1χ2.
(3.17)
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3.1.4 The first Leray decomposition of the quark/lepton fields

Now consider the (p, q) Leray tableau for the sheaf F = Ṽ , which is the first term in

eq. (3.6). This can be explicitly computed and is given by

q=1 RG⊕2 0 0

q=0 0 RG 0
p=0 p=1 p=2

⇒ Hp+q
(
X̃, Ṽ

)
, (3.18)

where RG is the regular representation of Z3 × Z3 given by

RG = 1 ⊕ χ1 ⊕ χ2 ⊕ χ2
1 ⊕ χ2

2 ⊕ χ1χ2 ⊕ χ1χ
2
2 ⊕ χ2

1χ2 ⊕ χ2
1χ

2
2. (3.19)

It follows from eq. (3.11) that H1(X̃, Ṽ ) is the sum of the two subspaces

H1
(
X̃, Ṽ

)
=
(
0, 1
∣∣Ṽ
)
⊕
(
1, 0
∣∣Ṽ
)
. (3.20)

Furthermore, eq. (3.18) tells us that

(
0, 1
∣∣Ṽ
)

= RG⊕2,
(
1, 0
∣∣Ṽ
)

= RG. (3.21)

Technically, the structure of eq. (3.20) is associated with the fact that the cohomology

H∗
(
X̃, Ṽ

)
decomposes into H∗

(
X̃, V1

)
⊕H∗

(
X̃, V2

)
. It turns out that the two subspaces

in eq. (3.20) arise as

RG = H1
(
X̃, V1

)
, RG⊕2 = H1

(
X̃, V2

)
(3.22)

respectively.

3.1.5 The (p,q) selection rule

Having computed the decompositions of H3(X̃,O eX
), H1(X̃,∧2Ṽ ) and H1(X̃, Ṽ ) into their

(p, q) Leray subspaces, we can now analyze the (p, q) components of the triple product

H1
(
X̃, Ṽ

)
⊗H1

(
X̃,∧2Ṽ

)
⊗H1

(
X̃, Ṽ

)
−→ H3

(
X̃,O eX

)
(3.23)

given in eq. (3.4). Inserting eqs. (3.17) and (3.20), we see that

H1
(
X̃, Ṽ

)
⊗H1

(
X̃,∧2Ṽ

)
⊗H1

(
X̃, Ṽ

)
=

((
0, 1
∣∣Ṽ
)
⊕
(
1, 0
∣∣Ṽ
))

⊗
(
1, 0
∣∣∧2Ṽ

)
⊗
((

0, 1
∣∣Ṽ
)
⊕
(
1, 0
∣∣Ṽ
))

=
((

0,1
∣∣eV
)
⊗
(
1,0
∣∣∧2 eV

)
⊗
(
1,0
∣∣eV
))⊕2

︸ ︷︷ ︸
total (p, q) degree = (2,1)

⊕
((

1,0
∣∣eV
)
⊗
(
1,0
∣∣∧2 eV

)
⊗
(
1,0
∣∣eV
))

︸ ︷︷ ︸
total (p, q) degree = (3,0)

⊕
((

0,1
∣∣eV
)
⊗
(
0,1
∣∣∧2 eV

)
⊗
(
0,1
∣∣eV
))

︸ ︷︷ ︸
total (p, q) degree = (0,3)

(3.24)

Because of the (p, q) degree, we see from eq. (3.15) that only the first term can have a

non-zero product in

H3
(
X̃,O eX

)
=
(
2, 1
∣∣O eX

)
. (3.25)
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It follows that the first quark/lepton family, which arises from
(
1, 0
∣∣Ṽ
)

= RG, (3.26)

will form non-vanishing Yukawa terms with the second and third quark/lepton families

coming from (
0, 1
∣∣Ṽ
)

= RG⊕2. (3.27)

All other Yukawa couplings must vanish. We refer to this as the (p, q) Leray degree selection

rule. We conclude that the only non-zero product in eq. (3.23) is of the form
(
0, 1
∣∣Ṽ
)
⊗
(
1, 0
∣∣∧2Ṽ

)
⊗
(
1, 0
∣∣Ṽ
)
−→

(
2, 1
∣∣O eX

)
. (3.28)

Roughly what happens is the following. The holomorphic (3, 0)-form Ω has two legs in the

base and one leg in the fiber direction. According to eq. (3.17), both 1-forms ΨH corre-

sponding to Higgs and Higgs conjugate have their one leg in the base direction. Therefore,

the wedge product in eq. (3.3) can only be non-zero if one quark/lepton 1-form Ψ has its leg

in the base direction and the other quark/lepton 1-form Ψ has its leg in the fiber direction.

We conclude that due to a selection rule for the (p, q) Leray degree, the Yukawa terms

in the effective low-energy theory can involve only a coupling of the first quark/lepton

family to the second and third. All other Yukawa couplings must vanish.

3.2 The second elliptic fibration

3.2.1 The second Leray spectral sequence

So far, we only made use of the fact that our Calabi-Yau manifold is an elliptic fibration

over the base B2. But the dP9 surface B2 is itself elliptically fibered over P
1. Consequently,

there is yet another selection rule coming from the second elliptic fibration. Therefore, we

now consider the second Leray spectral sequence corresponding to the projection

B2
β2−→ P

1. (3.29)

For any sheaf F̂ on B2, the Leray sequence now starts with a 2 × 2 Leray tableau

t=1 H0
(
P

1, R1β2∗F̂
)

H1
(
P

1, R1β2∗F̂
)

t=0 H0
(
P

1, β2∗F̂
)

H1
(
P

1, β2∗F̂
)

s=0 s=1

⇒ Hs+t
(
B2, F̂

)
. (3.30)

Again, the sum over the diagonals yields the desired cohomology of F̂ . Note that to

evaluate the product eq. (3.28), we need the [s, t] Leray tableaux for

F̂ = R1π2∗

(
Ṽ
)
, π2∗

(
Ṽ
)
, π2∗

(
∧2 Ṽ

)
, R1π2∗

(
O eX

)
. (3.31)

In the following, it will be useful to define

Hs

(
P

1, Rtβ2∗

(
Rqπ2∗

(
F
)))

≡
[
s, t
∣∣q,F

]
. (3.32)

One can think of
[
s, t
∣∣q,F

]
as the subspace of H∗

(
X̃,F

)
that can be written as forms with

q legs in the π2-fiber direction, t legs in the β2-fiber direction, and s legs in the base P
1

direction.
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3.2.2 The second Leray decomposition of the volume form

Let us first discuss the [s, t] Leray tableau for F̂ = R1π2∗

(
O eX

)
= KB2

, the canonical line

bundle. It follows immediately that

t=1 0 1

t=0 0 0
s=0 s=1

⇒ Hs+t
(
B2, R

1π2∗

(
O eX

))
. (3.33)

In our notation, this means that

H2
(
B2, R

1π2∗

(
O eX

))
=
[
1, 1
∣∣1,O eX

]
(3.34)

has pure [s, t] = [1, 1] degree. To summarize, we see that

H3
(
X̃,O eX

)
=
(
2, 1
∣∣O eX

)
=
[
1, 1
∣∣1,O eX

]
= 1. (3.35)

3.2.3 The second Leray decomposition of Higgs fields

Now consider the [s, t] Leray tableau for the sheaf F̂ = π2∗

(
∧2 Ṽ

)
. This can be explicitly

computed and is given by

t=1 χ1 ⊕ χ2
1 ⊕ 2χ2 ⊕ χ2

2 ⊕ χ1χ
2
2 0

t=0 χ2 ⊕ χ2
2 χ1 ⊕ χ2

1 ⊕ χ2
2 ⊕ χ2

1χ2

s=0 s=1

⇒Hs+t
(
B2, R

1π2∗

(
∧2Ṽ

))
.

(3.36)

t=1 χ1 ⊕ χ2
1 ⊕ χ2 ⊕ χ1χ

2
2 0

t=0 0 χ1 ⊕ χ2
1 ⊕ χ2

2 ⊕ χ2
1χ2

s=0 s=1

⇒Hs+t
(
B2, π2∗

(
∧2 Ṽ

))
.

(3.37)

This means that the 10 copies of the 10 of Spin(10) given in eq. (3.17) split as

H1
(
X̃,∧2Ṽ

)
=
(
1, 0
∣∣∧2Ṽ

)
⊕
(
0, 1
∣∣∧2Ṽ

)

=
([

0, 1
∣∣0,∧2Ṽ

]
⊕
[
1, 0
∣∣0,∧2Ṽ

])
⊕
[
0, 0
∣∣1,∧2Ṽ

] (3.38)

where
[
0, 1
∣∣0,∧2Ṽ

]
= χ1 ⊕ χ2

1 ⊕ χ2 ⊕⊕χ1χ
2
2,[

1, 0
∣∣0,∧2Ṽ

]
= χ1 ⊕ χ2

1 ⊕ χ2
2 ⊕ χ2

1χ2
[
0, 0
∣∣1,∧2Ṽ

]
= χ2 ⊕ χ2

2.

(3.39)

Note that

H1
(
X̃,∧2Ṽ

)
=
[
0, 1
∣∣0,∧2Ṽ

]
⊕
[
1, 0
∣∣0,∧2Ṽ

]
⊕
[
0, 0
∣∣1,∧2Ṽ

]

= 2
(
χ1 ⊕ χ2

1 ⊕ χ2 ⊕ χ2
2

)
⊕ χ1χ

2
2 ⊕ χ2

1χ2,
(3.40)

see eq. (3.17).
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3.2.4 The second Leray decomposition of the quark/lepton fields

Finally, let us consider the [s, t] Leray tableau for the quark/lepton fields. We have already

seen that, due to the (p, q) selection rule, both the first quark/lepton family arising from

(
1, 0
∣∣Ṽ
)

= RG (3.41)

and the second and third quark/lepton families coming from

(
0, 1
∣∣Ṽ
)

= RG⊕2 (3.42)

must occur in non-vanishing Yukawa interactions. Therefore, we are only interested in the

[s, t] decomposition of each of these subspaces. The
(
0, 1
∣∣Ṽ
)

subspace is associated with the

degree 0 cohomology of the sheaf R1π2∗

(
Ṽ
)
. The corresponding Leray tableau is given by

t=1 0 0

t=0 RG⊕2 0
s=0 s=1

⇒ Hs+t
(
B2, R

1π2∗

(
Ṽ
))
. (3.43)

It follows that the second and third families of quarks/leptons has [s, t] degree [0, 0],

(
0, 1
∣∣Ṽ
)

=
[
0, 0
∣∣1, Ṽ

]
= RG⊕2. (3.44)

The
(
1, 0
∣∣Ṽ
)

subspace is associated with the degree 1 cohomology of the sheaf π2∗

(
Ṽ
)
.

The corresponding Leray tableau is given by

t=1 RG 0

t=0 0 0
s=0 s=1

⇒ Hs+t
(
B2, π2∗

(
Ṽ
))
. (3.45)

It follows that the first family of quarks/leptons has [s, t] degree [0, 1],

(
1, 0
∣∣Ṽ
)

=
[
0, 1
∣∣0, Ṽ

]
= RG. (3.46)

3.2.5 The [s,t] selection rule

Having computed the decompositions of the relevant cohomology spaces into their [s, t]

Leray subspaces, we can now calculate the triple product eq. (3.4). The (p, q) selection

rule dictates that the only non-zero product is of the form eq. (3.28). Now split each

term in this product into its [s, t] subspaces, as given in eqs. (3.35), (3.38), (3.39), (3.44)

and (3.46). The result is

[
0, 0
∣∣1, Ṽ

]
⊗
([

0, 1
∣∣0,∧2Ṽ

]
⊕
[
1, 0
∣∣0,∧2Ṽ

])
⊗
[
0, 1
∣∣0, Ṽ

]
−→

[
1, 1
∣∣1,O eX

]
. (3.47)

Clearly, this triple product vanishes by degree unless we choose the
[
1, 0
∣∣0,∧2Ṽ

]
from the(

1, 0
∣∣∧2Ṽ

)
subspace. In this case, eq. (3.47) becomes

[
0, 0
∣∣1, Ṽ

]
⊗
[
1, 0
∣∣0,∧2Ṽ

]
⊗
[
0, 1
∣∣1, Ṽ

]
−→

[
1, 1
∣∣1,O eX

]
, (3.48)

which is consistent.
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We conclude that there is, in addition to the (p, q) selection rule discussed above,

an [s, t] Leray degree selection rule. This rule continues to allow non-vanishing Yukawa

couplings of the first quark/lepton family with the second and third quark/lepton families,

but only through the [
1, 0
∣∣0,∧2Ṽ

]
= χ1 ⊕ χ2

1 ⊕ χ2
2 ⊕ χ2

1χ2 (3.49)

component of
(
1, 0
∣∣∧2Ṽ

)
in eq. (3.38).

3.2.6 Wilson lines

We have, in addition to the SU(4) instanton, a non-vanishing Wilson line. Its effect is to

break the Spin(10) gauge group down to the desired SU(3)C ×SU(2)L ×U(1)Y ×U(1)B−L

gauge group. First, consider the 16 matter representations. We choose the Wilson line W

so that its Z3 × Z3 action on each 16 is given by

16 =
[
χ1χ

2
2Q⊕ χ2

2e⊕ χ2
1χ

2
2u
]
⊕
[
L⊕ χ2

1d
]
⊕ χ2ν, (3.50)

where the representations Q,u,d and L,ν,e were defined in eqs. (2.26) and (2.27), respec-

tively. Recall from eqs. (3.20) and (3.21) that H1
(
X̃, Ṽ

)
= RG ⊕ RG⊕2. Tensoring any

RG subspace of the cohomology space H1
(
X̃, Ṽ

)
with a 16 using eqs. (3.19) and (3.50),

we find that the invariant subspace under the Z3 × Z3 action is

(
RG⊗ 16

)Z3×Z3

= span
{
Q,u, d, L, ν, e

}
. (3.51)

It follows that each RG subspace ofH1
(
X̃, Ṽ

)
projects to a complete quark/lepton family at

low-energy. This justifies our identification of the subspace RG with the first quark/lepton

family and the subspace RG⊕2 with the second and third quark/lepton families throughout

the text.

Second, notice that each fundamental matter field in the 10 can be broken to a Higgs

field, a color triplet, or projected out. In particular, we are going to choose the Wilson line

W so that its Z3 × Z3 action on a 10 representation of Spin(10) is given by

10 =
[
χ2

1H ⊕ χ2
1χ

2
2C
]
⊕
[
χ1H̄ ⊕ χ1χ2C̄

]
. (3.52)

From eq. (2.29), we see that H and H̄ are the Higgs and Higgs conjugate representations

H = (1,2, 3, 0), H̄ = (1,2,−3, 0) (3.53)

and

C =
(
3,1,−2,−2

)
, C̄ =

(
3,1, 2, 2

)
(3.54)

are the color triplet representations of SU(3)C × SU(2)L × U(1)Y × U(1)B−L. Tensoring

this with the cohomology space H1
(
X̃,∧2Ṽ

)
, we find the invariant subspace under the

combined Z3 × Z3 action on the cohomology space, eqs. (3.38), (3.39), and the Wilson line

eq. (3.52), to be

(
H1
(
X̃,∧2Ṽ

)
⊗ 10

)Z3×Z3

= span
{
H1, H̄1,H2, H̄2

}
. (3.55)
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Note that H1, H̄1,H2, H̄2 each arise from a different 10 representation. The pairing Hk, H̄k

for k = 1, 2 will be explained below. Therefore, as stated in eq. (6.64), precisely two pairs

of Higgs-Higgs conjugate fields survive the Z3 × Z3 quotient. As required for any realistic

model, all color triplets are projected out. The new information now is the (p, q) and [s, t]

degrees of the Higgs fields. Using the decompositions eqs. (3.17), (3.38), and (3.39) of

H1
(
X̃,∧2Ṽ

)
, we find

(
H1
(
X̃,∧2Ṽ

)
⊗ 10

)Z3×Z3

=
((

1, 0
∣∣∧2Ṽ

)
⊗ 10

)Z3×Z3

=

=
([

0, 1
∣∣0,∧2Ṽ

]
⊗ 10

)Z3×Z3

︸ ︷︷ ︸
=span{H2,H̄2}

⊕
([

1, 0
∣∣0,∧2Ṽ

]
⊗ 10

)Z3×Z3

︸ ︷︷ ︸
=span{H1,H̄1}

. (3.56)

The dimensions and basis of the two terms on the right side of this expression are de-

termined by taking the tensor product of eqs. (3.39) and (3.52) and keeping the Z3 × Z3

invariant part. Note that the subspace forming the non-zero Yukawa couplings in eq. (3.48),

namely
[
1, 0
∣∣0,∧2Ṽ

]
, projects to only one of the two Higgs-Higgs conjugate pairs in the

low-energy theory.

We label this pair as H1, H̄1, despite the fact that they arise from different 10 rep-

resentations. The remaining pair we denote as H2, H̄2. Since these are projected from

the
[
0, 1
∣∣0,∧2Ṽ

]
subspace, they are forbidden from forming cubic Yukawa couplings with

quarks/leptons. To conclude, of the two Higgs-Higgs conjugate pairs (Hk, H̄k), k = 1, 2 in

the low-energy spectrum, only (H1, H̄1) can form non-zero cubic Yukawa couplings. Such

couplings are disallowed for (H2, H̄2) by the “stringy” [s, t] Leray selection rule.

3.3 Yukawa couplings

We have analyzed cubic terms in the superpotential of the form

λk
u,ijQiHkuj, λk

d,ijQiH̄kdj, λk
ν,ijLiHkνj , λk

e,ijLiH̄kej (3.57)

where

• each coefficient λ is determined by an integral of the form of eq. (3.3),

• Qi,Li for i = 1, 2, 3 are the electroweak doublets of the three quarks/lepton families

respectively,

• uj,dj ,νj ,ej for j = 1, 2, 3 are the electroweak singlets of the three quark/lepton families

respectively,

• Hk, k = 1, 2 are the Higgs fields, and

• H̄k, k = 1, 2 are the Higgs conjugate fields.

We found that they are subject to two independent selection rules coming from the two

independent torus fibrations. The first selection rule is that the total (p, q) degree is (2, 1).

Since the (p, q) degrees for the first quark/lepton family, the second and third quark/lepton
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families and all the Higgs fields are (0, 1), (1, 0) and (1, 0) respectively, it follows that the

only non-vanishing λ coefficients allowed by the (p, q) selection rules are of the form

λk
u,1j , λ

k
u,j1 λk

d,1j , λ
k
d,j1 λk

ν,1j , λ
k
ν,j1 λk

e,1j , λ
k
e,j1 (3.58)

for j = 2, 3 and k = 1, 2. That is, the only non-zero Yukawa terms couple the first family to

the second and third families respectively. The second selection rule imposes independent

constraints. It states that the total [s, t] degree has to be [1, 1]. Of the two possible [s, t]

degrees associated with the Higgs fields, only the [1, 0] subspace satisfies the [s, t] selection

rule. This selection rule disallows the second Higgs-Higgs conjugate pair (H2, H̄2) from

forming non-zero cubic Yukawa couplings. That is, the only non-vanishing λ coefficients

consistent with both the (p, q) and [s, t] selection rules are of the form

λ1
u,1j , λ

1
u,j1 λ1

d,1j , λ
1
d,j1 λ1

ν,1j , λ
1
ν,j1 λ1

e,1j , λ
1
e,j1 (3.59)

corresponding to the first Higgs pair (H1, H̄1).

As in [19], let us analyze, for example, the Yukawa contribution to the up-quark mass

matrix. Assuming that H1 gets a non-vanishing vacuum expectation value 〈H1〉 in its

charge neutral component, this contribution can be written as



0 λ1
u,12〈H1〉 λ1

u,13〈H1〉
λ1

u,21〈H1〉 0 0

λ1
u,31〈H1〉 0 0


 (3.60)

Using independent non-singular transformations on the Qi and ui fields, one can find bases

in which eq. (3.60) becomes 


0 0 0

0 λ〈H1〉 0

0 0 λ〈H1〉


 (3.61)

where λ is an arbitrary, but non-zero, real number. We conclude from the zero diagonal

element that one up-quark is strictly massless.3 Furthermore, the two non-zero diagonal

elements imply that the second and third up-quarks will have non-vanishing masses of

O
(
〈H1〉

)
. However, the exact value of their masses will depend on the explicit normalization

of the kinetic energy terms in the low-energy theory. These masses, therefore, are in general

not degenerate. This analysis applies to the down-quarks and the up- and down-leptons

as well. We conclude that, prior to higher order and non-perturbative corrections, one

complete generation of quarks/leptons will be massless. The remaining two generations

will have non-vanishing masses on the order of the electroweak symmetry breaking scale

which are, generically, non-degenerate.

The coefficients λ have no interpretation as an intersection number and, therefore, no

reason to be constant over the moduli space. In general, we expect them to depend on the

moduli. Of course, to explicitly compute the quark/lepton masses one needs, in addition,

the Kahler potential, which determines the correct normalization of the fields.

3At least, on the classical level. Higher order and non-perturbative terms in the superpotential could

lead to naturally small corrections.
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4. Cubic µ-terms in the superpotential

In this section, we focus on computing Higgs-Higgs conjugate µ-terms. First, note that in

our heterotic model the two pairs of Higgs fields arise from eq. (2.20) as zero modes of the

Dirac operator. Hence, they cannot have “bare” µ-terms in the superpotential proportional

to HH̄ with constant coefficients. However, H and H̄ can have cubic interactions with the

vector bundle moduli of the form φHH̄. If the moduli develop non-vanishing vacuum

expectation values, then these cubic interactions generate µ-terms of the form 〈φ〉HH̄ in

the superpotential. Hence, we expect Higgs µ-terms that are linearly dependent on the

vector bundle moduli. Classically, no higher dimensional coupling of moduli to H and H̄

is allowed.

It follows from eq. (2.20) that the 4-dimensional Higgs and moduli fields correspond

to certain ∂̄-closed (0, 1)-forms on X̃ with values in the vector bundle ∧2Ṽ and ad(Ṽ )

respectively. Denote these forms by ΨH , ΨH̄ , and Ψφ. They can be written as

ΨH = ψ
(H)
ῑ,[ab] dz̄

ῑ, ΨH̄ = ψ
(H̄)
ῑ,[ab] dz̄

ῑ, Ψφ = [ψ
(φ)
ῑ ] b

a dz̄ῑ, (4.1)

where a, b are valued in the SU(4) bundle Ṽ and {zι, z̄ῑ} are coordinates on the Calabi-

Yau threefold X̃ . Doing the dimensional reduction of the 10-dimensional Lagrangian yields

cubic terms in the superpotential of the 4-dimensional effective action. It turns out, see [19],

that the coefficient of the cubic coupling φHH̄ is simply the unique way to obtain a number

out of the forms ΨH , ΨH̄ , and Ψφ. That is,

W = · · · + λ̂φHH̄ (4.2)

where

λ̂ =

∫

eX

Ω ∧ Tr
[
Ψφ ∧ ΨH ∧ ΨH̄

]
=

=

∫

eX

Ω ∧
(
ǫacde[ψ

(φ)
ῑ ] b

a ψ
(H)
κ̄,[bc] ψ

(H̄)

λ̄,[de]

)
dz̄ῑ ∧ dz̄κ̄ ∧ dz̄λ̄

(4.3)

and Ω is the holomorphic (3, 0)-form. Similarly to the Yukawa couplings discussed above,

we are using the wedge product together with a contraction of the vector bundle indices

to obtain a product

H1
(
X̃, ad(Ṽ )

)
⊗H1

(
X̃,∧2Ṽ

)
⊗H1

(
X̃,∧2Ṽ

)
−→

−→ H3
(
X̃, ad(Ṽ ) ⊗ ∧2Ṽ ⊗ ∧2Ṽ

)
−→ H3

(
X̃,O eX

)
, (4.4)

plus the fact that on the Calabi-Yau manifold X̃

H3
(
X̃,O eX

)
= H3

(
X̃,K eX

)
= H3,3

∂̄

(
X̃
)

= H6
(
X̃
)

(4.5)

can be integrated over. If one were to use the heterotic string with the “standard embed-

ding”, then the above product would simplify further to the intersection of certain cycles

in the Calabi-Yau threefold. However, in our case there is no such description.
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Hence, to compute µ-terms we must first analyze the cohomology groups

H1
(
X̃, ad(Ṽ )

)
, H1

(
X̃,∧2Ṽ

)
, H3

(
X̃,O eX

)
(4.6)

and the action of Z3 × Z3 on these spaces. We then have to evaluate the product in

eq. (4.4). As we will see in the following sections, the two independent elliptic fibrations

of X̃ will force most, but not all, products to vanish.

4.1 The first elliptic fibration

The Leray spectrial sequences for the first elliptic fibration X̃
π2−→ B2 was discussed in

detail in subsection 3.1. Furthermore, the first Leray decomposition for the sheaves O eX

and ∧2Ṽ associated with the volume form and Higgs fields were presented in eqs. (3.15)

and (3.17), respectively. To find the φHH̄ cubic terms, one must additionally compute the

first Leray decomposition for the sheaf ad(Ṽ ) associated with the vector bundle moduli.

4.1.1 The first Leray decomposition of the moduli

The (tangent space to the) moduli space of the vector bundle Ṽ is H1(X̃, ad(Ṽ )). First,

note that ad(Ṽ ) is defined to be the traceless part of Ṽ ⊗ Ṽ ∗. But the trace is just the

trivial line bundle, whose first cohomology group vanishes. Therefore

H1
(
X̃, ad(Ṽ )

)
= H1

(
X̃, Ṽ ⊗ Ṽ ∗

)
−H1

(
X̃,O eX

)

︸ ︷︷ ︸
=0

. (4.7)

Since the action of the Wilson line on the 1 representation of Spin(10) is trivial, one

need only consider the Z3 × Z3 invariant subspace of this cohomology. That is, in the

decomposition of the index of the Dirac operator, eq. (2.20), the vector bundle moduli

fields are contained in

(
H1
(
X̃, ad(Ṽ )

)
⊗ 1
)Z3×Z3

= H1
(
X̃, ad(Ṽ )

)Z3×Z3

= H1
(
X̃, Ṽ ⊗ Ṽ ∗

)Z3×Z3

. (4.8)

In a previous paper [18], presented an explicity method for computing the (p, q) decom-

position of H∗(X̃, ad(Ṽ ))Z3×Z3 from the complex of intertwined long exact sequences in

which this cohomolgy is embedded. Here, we simply present the results for our specific

bundles with two Higgs pairs.

We find that the H1 entries in the X̃ → B2 Leray tableau for H∗(X̃, Ṽ ⊗ Ṽ ∗)Z3×Z3 are

q=1 9 4 0

q=0 0 4 9
p=0 p=1 p=2

⇒ Hp+q
(
X̃, Ṽ ⊗ Ṽ ∗

)Z3×Z3

(4.9)

where, as previously, the non-zero entries denote the rank 4 and 9 trivial representations

of Z3 × Z3. Note that

H1(X̃, Ṽ ⊗ Ṽ ∗)Z3×Z3 = 9 + 4 = 13, (4.10)

– 20 –



J
H
E
P
1
0
(
2
0
0
8
)
0
4
6

which is consistent with the statement in eq. (2.31) that there are a total of 13 vector bundle

moduli. Now, however, we have determined the (p, q) decomposition ofH1(X̃, Ṽ ⊗Ṽ ∗)Z3×Z3

into the subspaces

H1
(
X̃, Ṽ ⊗ Ṽ ∗

)Z3×Z3

=
(
0, 1
∣∣Ṽ ⊗ Ṽ ∗

)Z3×Z3 ⊕
(
1, 0
∣∣Ṽ ⊗ Ṽ ∗

)Z3×Z3 , (4.11)

where (
0, 1
∣∣Ṽ ⊗ Ṽ ∗

)Z3×Z3 = 9,
(
1, 0
∣∣Ṽ ⊗ Ṽ ∗

)Z3×Z3 = 4, (4.12)

respectively.

4.1.2 The (p,q) selection rule

Having computed the decompositions of H3(X̃,O eX
), H1(X̃,∧2Ṽ ) and H1(X̃, ad(Ṽ ))Z3×Z3

into their (p, q) Leray subspaces, we can now analyze the (p, q) components of the triple

product

H1
(
X̃, Ṽ ⊗ Ṽ ∗

)Z3×Z3

⊗H1
(
X̃,∧2Ṽ

)
⊗H1

(
X̃,∧2Ṽ

)
−→ H3

(
X̃,O eX

)
(4.13)

given in eq. (4.4). Inserting eqs. (3.17) and (4.11), we see that

H1
(
X̃, Ṽ ⊗ Ṽ ∗

)Z3×Z3

⊗H1
(
X̃,∧2Ṽ

)
⊗H1

(
X̃,∧2Ṽ

)
=

=
((

0, 1
∣∣Ṽ ⊗ Ṽ ∗

)Z3×Z3 ⊕
(
1, 0
∣∣Ṽ ⊗ Ṽ ∗

)Z3×Z3

)
⊗
(
1, 0
∣∣∧2Ṽ

)
⊗
(
1, 0
∣∣∧2Ṽ

)
=

=
((

0,1
∣∣eV ⊗eV ∗

)Z3×Z3
⊗
(
1,0
∣∣∧2 eV

)
⊗
(
1,0
∣∣∧2 eV

))

︸ ︷︷ ︸
total (p, q) degree = (2,1)

⊕
((

1,0
∣∣eV ⊗eV ∗

)Z3×Z3
⊗
(
1,0
∣∣∧2 eV

)
⊗
(
1,0
∣∣∧2 eV

))

︸ ︷︷ ︸
total (p, q) degree = (3,0)

.

(4.14)

Because of the (p, q) degree, only the first term can have a non-zero product in

H3
(
X̃,O eX

)
=
(
2, 1
∣∣O eX

)
, (4.15)

see eq. (3.15). It follows that out of the H1(Ṽ ⊗ Ṽ ∗)Z3×Z3 = 13 vector bundle moduli, only

(
0, 1
∣∣Ṽ ⊗ Ṽ ∗

)Z3×Z3 = 9 (4.16)

will form non-vanishing Higgs-Higgs conjugate µ-terms. The remaining 4 moduli in the(
1, 0
∣∣Ṽ ⊗ Ṽ ∗

)Z3×Z3 component have the wrong (p, q) degree to couple to a Higgs-Higgs

conjugate pair. As in the case of Yukawa couplings, we refer to this as the (p, q) Leray

degree selection rule. We conclude that the only non-zero product in eq. (4.13) is of the form

(
0, 1
∣∣Ṽ ⊗ Ṽ ∗

)Z3×Z3 ⊗
(
1, 0
∣∣∧2Ṽ

)
⊗
(
1, 0
∣∣∧2Ṽ

)
−→

(
2, 1
∣∣O eX

)
. (4.17)

Roughly what happens is the following. The Leray spectral sequence decomposes differ-

ential forms into the number p of legs in the direction of the base and the number q of

legs in the fiber direction. The holomorphic (3, 0)-form Ω has two legs in the base and one
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leg in the fiber direction. According to eq. (3.17), both 1-forms ΨH , ΨH̄ corresponding to

Higgs and Higgs conjugate have their one leg in the base direction. Therefore, the wedge

product in eq. (4.3) can only be non-zero if the modulus 1-form Ψφ has its leg in the fiber

direction, which only 9 out of the 13 bundle moduli satisfy.

We conclude that due to a selection rule for the (p, q) Leray degree, the Higgs µ-terms

in the effective low-energy theory can involve only 9 of the 13 vector bundle moduli.

4.2 The second elliptic fibration

So far, we only made use of the fact that our Calabi-Yau manifold is an elliptic fibration over

the base B2. But the dP9 surface B2 is itself elliptically fibered over a P
1. Consequently,

there is yet another selection rule coming from the second elliptic fibration. The Leray

spectral sequence for the second elliptic fibration B2
β2−→ P

1 was discussed in subsection 3.2.

Furthermore, the second Leray decomposition for the sheaves O eX
and ∧2Ṽ associated with

the volume form and Higgs fields were presented in eqs. (3.35) and (3.38), respectively. To

find the φHH̄ cubic terms, one must additionally compute the second Leray decomposition

for the sheaf ad(Ṽ ) associated with the vector bundle moduli.

4.2.1 The second Leray decomposition of the moduli

Let us consider the [s, t] Leray tableau for the moduli. We have already seen that, due to

the (p, q) selection rule, only

(
0, 1
∣∣Ṽ ⊗ Ṽ ∗

)Z3×Z3 = 9 ⊂ H1
(
X̃, Ṽ ⊗ Ṽ ∗

)Z3×Z3

(4.18)

out of the 13 moduli can occur in the Higgs-Higgs conjugate µ-term. Therefore, we are only

interested in the [s, t] decomposition of this subspace; that is, the degree 0 cohomology of

the sheaf R1π2∗

(
Ṽ ⊗ Ṽ ∗

)
. The corresponding Leray tableau is given by

t=1

t=0 9
s=0 s=1

⇒ Hs+t
(
B2, R

1π2∗

(
Ṽ ⊗ Ṽ ∗

))Z3×Z3

, (4.19)

where the empty boxes are of no interest for our purposes. It follows that the 9 moduli of

interest have [s, t] degree [0, 0]. That is,
(
0, 1
∣∣Ṽ ⊗ Ṽ ∗

)Z3×Z3 =
[
0, 0
∣∣1, Ṽ ⊗ Ṽ ∗

]Z3×Z3 = 9. (4.20)

4.2.2 The [s,t] selection rule

Having computed the decompositions of the relevant cohomology spaces into their [s, t]

Leray subspaces, we can now calculate the triple product eq. (4.4). The (p, q) selection

rule dictates that the only non-zero product is of the form eq. (4.17). Now split each term in

this product into its [s, t] subspaces, as given in eqs. (3.35), (3.38), and (4.20) respectively.

The result is

[
0, 0
∣∣1, Ṽ ⊗ Ṽ ∗

]Z3×Z3 ⊗
([

0, 1
∣∣0,∧2Ṽ

]
⊕
[
1, 0
∣∣0,∧2Ṽ

])
⊗

⊗
([

0, 1
∣∣0,∧2Ṽ

]
⊕
[
1, 0
∣∣0,∧2Ṽ

])
−→

[
1, 1
∣∣1,O eX

]
. (4.21)
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Clearly, this triple product vanishes by degree unless we choose the
[
0, 1
∣∣0,∧2Ṽ

]
from

one of the
(
1, 0
∣∣∧2Ṽ

)
subspaces and

[
1, 0
∣∣0,∧2Ṽ

]
from the other. In this case, eq. (4.21)

becomes

[
0, 0
∣∣1, Ṽ ⊗ Ṽ ∗

]Z3×Z3 ⊗
[
1, 0
∣∣0,∧2Ṽ

]
⊗
[
0, 1
∣∣0,∧2Ṽ

]
−→

[
1, 1
∣∣1,O eX

]
, (4.22)

which is consistent.

4.2.3 Wilson lines

Recall that we have, in addition to the SU(4) instanton, a Wilson line4 turned on. Its effect

is to break the Spin(10) gauge group down to the desired SU(3)C × SU(2)L × U(1)Y ×
U(1)B−L gauge group. Each fundamental matter field in the 10 can be broken to a Higgs

field, a color triplet, or projected out. The Z3 × Z3 action of the Wilson line W on a

10 representation of Spin(10) was given in (3.52). Tensoring this with the cohomology

space H1
(
X̃,∧2Ṽ

)
presented in (3.38),(3.39), we found the invariant subspace under the

combined Z3 × Z3 action on the cohomology space and the Wilson line to be

(
H1
(
X̃,∧2Ṽ

)
⊗ 10

)Z3×Z3

= span
{
H1, H̄1,H2, H̄2

}
. (4.23)

That is, two copies of Higgs and two copies of Higgs conjugate fields survive the Z3 × Z3

quotient. As required for any realistic model, all color triplets are projected out.

Further information was obtained from the (p, q) and [s, t] degrees of the Higgs fields.

Using the decomposition of H1
(
X̃,∧2Ṽ

)
, we found

(
H1
(
X̃,∧2Ṽ

)
⊗ 10

)Z3×Z3

=
((

1, 0
∣∣∧2Ṽ

)
⊗ 10

)Z3×Z3

=

=
([

0, 1
∣∣0,∧2Ṽ

]
⊗ 10

)Z3×Z3

︸ ︷︷ ︸
=span{H2,H̄2}

⊕
([

1, 0
∣∣0,∧2Ṽ

]
⊗ 10

)Z3×Z3

︸ ︷︷ ︸
=span{H1,H̄1}

. (4.24)

Recall that the (H1, H̄1) Higgs pair can form non-vanishing cubic Yukawa couplings,

whereas the (H2, H̄2) pair is forbidden to do so by the [s, t] selection rule.

Decomposition (4.24) also labels the cubic µ-term coupling to the moduli. Note that

[s, t] selection rule eq. (4.22) only allows non-vanishing cubic µ-terms involving one Higgs

field from
[
0, 1
∣∣0,∧2Ṽ

]
and one Higgs field from

[
1, 0
∣∣0,∧2Ṽ

]
. It follows that the cubic

µ-terms are of the form φH1H̄2 and φH̄1H2 only.

4.3 Higgs µ-terms

To conclude, we analyzed cubic terms in the superpotential of the form

λ̂m
klφmHkH̄l, (4.25)

where

4In fact, we switch on a separate Wilson line for both Z3 factors in π1(X) = Z3 × Z3.
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• λ̂m
kl is a coefficient determined by the integral eq. (4.3),

• φm, m = 1, . . . , 13 are the vector bundle moduli,

• Hk, k = 1, 2 are the two Higgs fields, and

• H̄l, l = 1, 2 are the two Higgs conjugate fields.

We found that they are subject to two independent selection rules coming from the two

independent torus fibrations. The first selection rule is that the total (p, q) degree is (2, 1).

According to (4.17), HkH̄l already has (p, q) degree (2, 0). Hence the moduli fields φm

must have degree (0, 1). In eq. (4.12) we found that only the moduli φm, m = 1, . . . , 9,

have the right (p, q) degree. In other words, the coefficients

λ̂m
kl = 0, m = 10, . . . , 13 (4.26)

must vanish. Furthermore, the second selection rule eq. (4.22) imposes independent con-

straints. It states that the total [s, t] degree has to be [1, 1]. We showed that only the cubic

terms φmH1H̄2 and φmH̄1H2 for m = 1, . . . , 9. have the correct degree [1, 1]. Therefore,

the (p, q) and [s, t] selection rules allow µ-terms involving 9 out of the 13 vector bundle

moduli coupling to H1H̄2 and H2H̄1, but disallow their coupling to H1H̄1 and H2H̄2. Cu-

bic terms involving Higgs-Higgs conjugate fields with any of the remaining 4 moduli are

forbidden in the superpotential. That is, the only non-vanishing λ̂ coefficients in (4.25) are

of the form

λ̂m
12, λ̂

m
21, m = 1, . . . , 9. (4.27)

Note that the expressions (4.26) and (4.27) naturally partition the m = 1, . . . , 13 index

into

{m} = {m̄, m̃} , (4.28)

where m̄ = 1, . . . , 9 and m̃ = 10, . . . , 13. When the moduli develop non-zero vacuum

expectation values, these superpotential terms generate Higgs µ-terms of the form

λ̂m̄
12 〈φm̄〉H1H̄2 + λ̂m̄

21 〈φm̄〉H2H̄1, m̄ = 1, . . . , 9. (4.29)

The coefficients λ̂m
kl have no interpretation as intersection numbers and, therefore, no

reason to be constant over moduli space. In general, we expect them to depend on the

moduli. Of course, to explicitly compute these functions one needs the Kahler potential

which determines the correct normalization for all fields.

5. Discussion of the superpotential

As shown in the previous two sections, the perturbative holomorphic superpotential for

zero-modes of the two Higgs-Higgs conjugate pair vacua presented in this paper is given,

up to operators of dimension 4, by

W0 = WYukawa +Wµ, (5.1)
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where

WYukawa = λ1
u,ijQiH1uj + λ1

d,ijQiH̄1dj + λ1
ν,ijLiH1νj + λ1

e,ijLiH̄1ej (5.2)

with the restriction i = 1, j = 2, 3 or i = 2, 3, j = 1, and

Wµ = λ̂m̄
12φm̄H1H̄2 + λ̂m̄

21φm̄H2H̄1, (5.3)

where m̄ = 1, . . . , 9. Quadratic mass terms do not appear in W0 since all fields in the per-

turbative low energy theory are strictly zero-modes of the Dirac operator. Furthermore, the

cubic terms are restricted by the “stringy” (p, q) and [s, t] Leray selection rules. Specifically,

non-vanishing Yukawa terms can only occur between the first family of quarks/leptons and

the second and third quark/lepton families. In addition, only the first pair of Higgs-Higgs

conjugate fields, H1 and H̄1, can appear in these non-vanishing Yukawa couplings. Simi-

lary, non-zero cubic µ-terms can only occur beween a specific 9-dimensional subset of the

13 vector bundle moduli and the restricted pairs H1H̄2 and H2H̄1.

It is important to note, however, that only the zero-modes need have vanishing mass

terms. Non zero-modes, that is, the superfields corresponding to Kaluza-Klein states, do

add quadratic terms to the superpotential. For example, let H and H̄ be two superfields

corresponding to Kaluza-Klein modes with the same quantum numbers as H1,2 and H̄1,2.

These contribute a mass term

Wmass,KK = McHH̄ (5.4)

to the superpotential, where Mc is of the order of the Calabi-Yau compactification scale.

Similarly, the (p, q) and [s, t] Leray selection rules only apply to the cubic product of

the sheaf cohomologies associated with the zero-modes of the Dirac operator. It follows

that there is no restraint, other than group theory, on cubic terms involving at least one

Kaluza-Klein superfield. The terms of interest for this paper are

WYukawa,KK = λ̃u,ijQiHuj + λ̃d,ijQiH̄dj + λ̃ν,ijLiHνj + λ̃e,ijLiH̄ej (5.5)

and

Wµ,KK =
˜̂
λm

k φmHH̄k +
˜̂
λ

′m
k φmHkH̄, (5.6)

where the sums over i, j = 1, 2, 3 as well as m = 1, . . . , 13 and k = 1, 2 are unconstrained.

The significance of this is that such interactions can quantum mechanically induce

amplitudes which, at energy small compared to the compactification scale, appear as irre-

ducible, holomorphic higher-dimensional contributions to the superpotential. Despite the

fact that such terms depend on zero-modes only, they are not subject to (p, q) and [s, t]

selection rules since they are not generated as a triple cohomology product. There are two

classes of tree-level supergraphs that are of particular interest for this paper. The first of

these is shown in figure 1. An analysis of these graphs shows that for energy-momenta

much less than the compactification scale, that is, k2 ≪M2
c , they induce quartic terms in

the superpotential of the form

W4 = λ̃u,ij
˜̂
λ

′m
2

φm

Mc
QiH2uj + λ̃d,ij

˜̂
λm

2

φm

Mc
QiH̄2dj + λ̃ν,ij

˜̂
λ

′m
2

φm

Mc
LiH2νj + λ̃e,ij

˜̂
λm

2

φm

Mc
LiH̄2ej ,

(5.7)
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H̄ H

H2

φm

uj(νj)

Qi(Li)

˜̂
λ

′m
2

λ̃u(ν),ij

H H̄

H̄2

φm

dj(ej)

Qi(Li)

˜̂
λm

2
λ̃d(e),ij

(a) (b)

Figure 1: Kaluza-Klein mode mediated supergraphs giving rise to W4 and effective Yukawa cou-

plings of quarks/leptons to the second Higgs pair.

where the sums over m = 1, . . . , 13 and i, j = 1, 2, 3 are unrestricted. These terms are of

physical significance since, if at least one of the vector bundle moduli has a non-vanishing

vacuum expectation value 〈φm〉, they yield cubic Yukawa terms where quark/lepton super-

fields couple to the second Higgs pair, H2 and H̄2. The induced Yukawa interactions are

of the form

W4,Yukawa = λ2
u,ijQiH2uj + λ2

d,ijQiH̄2dj + λ2
ν,ijLiH2νj + λ2

e,ijLiH̄2ej , (5.8)

where

λ2
u(ν),ij = λ̃u(ν),ij

˜̂
λ

′m
2

〈φm〉
Mc

, λ2
d(e),ij = λ̃d(e),ij

˜̂
λm

2

〈φm〉
Mc

. (5.9)

Such couplings were disallowed classically by the (p, q) and [s, t] Leray selection rules, as

discussed above, but can be generated from the quartic terms in W4 when the vector bundle

moduli have non-vanishing expectation values. It is important to note, however, that since

these Yukawa couplings to the second Higgs pair arise from higher dimension operators,

they are naturally suppressed by the factors

˜̂
λ

′m
2

〈φm〉
Mc

≪ 1 ,
˜̂
λm

2

〈φm〉
Mc

≪ 1 . (5.10)

An estimate of the magnitudes of these factors will be presented below. Let us assume,

for example, that the cubic couplings of quarks/leptons to the Kaluza-Klein Higgs pair

H, H̄ are of the same order of magnitude as their Yukawa couplings to H1, H̄1; that is,

λ̃u(ν),ij ∼ λ1
u(ν),ij , λ̃d(e),ij ∼ λ1

d(e),ij . Then it follows from (5.10) that

λ2
u(ν),ij ≪ λ1

u(ν),ij , λ2
d(e),ij ≪ λ1

d(e),ij . (5.11)

Clearly this will remain true for a much wider range of assumptions as well, depending on

the magnitude of the suppression factors in (5.10). We conclude that the Yukawa couplings

of quarks/leptons to the second Higgs pair are naturally suppressed relative to the Yukawa

couplings to the first Higgs pair. The physical implications of this will be discussed in

detail below. Before doing that, however, let us provide an estimate for the suppression

factors in (5.10).

The second class of supergraphs of interest is shown in figure 2. In the low energy-

momentum limit, k2 ≪ M2
c , these induce quartic terms in the superpotential of the form
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H̄ H

H2

φm

H̄2

φn

˜̂
λ

′m
2

˜̂
λn

2

Figure 2: Kaluza-Klein mode mediated supergraphs giving rise to W ′

4 and effective µ terms in the

superpotential.

W ′
4 =

˜̂
λ

′m
k

˜̂
λn

l

φm

Mc
φnHkH̄l , (5.12)

where the sums over m,n = 1, . . . , 13 and k, l = 1, 2 are unrestricted. These terms are

physically significant since, if at least one of the vector bundle moduli has a non-vanishing

vacuum expectation value 〈φm〉, they induce Higgs µ-terms of the form

W4,µ = µklHkH̄l (5.13)

with coefficients

µkl =

(
˜̂
λ

′m
k

〈φm〉
Mc

)(
˜̂
λn

l

〈φn〉
Mc

)
Mc . (5.14)

On generic grounds, if this theory is to naturally have appropriate electroweak symmetry

breaking, these µ-coefficients must satisfy

µkl . MEW , (5.15)

where MEW ≈ 102GeV . It follows from (5.14) that

˜̂
λ

′m
k

〈φm〉
Mc

∼ ˜̂
λm

k

〈φm〉
Mc

.

√
MEW

Mc
≈ 10−7 . (5.16)

In the final term, we have chosen Mc ≈ 1016GeV . This is consistent with the inequali-

ties (5.10) and gives a natural estimate for their magnitude. Note that if this bound is

saturated, the natural suppression (5.11) of the Yukawa couplings to the second Higgs pair

will remain true even if the λ̃u(ν),ij , λ̃d(e),ij coupling parameters in (5.9) are as large as

λ̃u(ν),ij ∼ λ̃d(e),ij ∼ 1. In this case, one would have

λ2
u(ν),ij ∼ 10−7 , λ2

d(e),ij ∼ 10−7 , (5.17)

a fact we will use in the next section.

Let us now return to the low-energy theory described strictly by the zero-modes of

the Dirac operator. The Kaluza-Klein superfields “decouple” and, hence, we can ignore

all interactions containing at least one of these heavy fields. It follows that the relevant

superpotential for the low-energy theory is given by

W = WYukawa +Wµ +W4 +W ′
4, (5.18)
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where WYukawa, Wµ, W4 and W ′
4 are given in eqs. (5.2), (5.3), (5.7) and (5.12) respectively.

In broad outline, the physics described by the superpotential W in (5.18), relevant to the

fact that there are two Higgs-Higgs conjugate pairs, is the following. First, note that

since the coefficients of the Yukawa couplings to the second Higgs pair, H2 and H̄2, are

suppressed, it follows that the masses of quarks and leptons are predominantly generated

by the vacuum expectation values of the first Higgs pair, H1 and H̄1, as in the standard

MSSM. Second, the masses of the W± and Z vector bosons receive contributions from both

pairs of Higgs-Higgs conjugate superfields through their respective kinetic energy terms.

Despite this, the GIM mechanism continues to apply at tree level and, hence, Z couples

only to flavor preserving currents. Third, recall that in the single Higgs pair MSSM, all

flavor-changing currents coupled to the neutral Higgs scalar boson vanish. This is no

longer true, however, when the spectrum contains a second Higgs pair. In this case, one

expects Higgs-induced flavor changing neutral currents coupled to as many as three neutral

Higgs bosons. If the coefficients of the Yukawa couplings to H2 and H̄2 were arbitrarily

large, then these Higgs-induced neutral currents would violate current phenomenological

bounds on a number of processes. However, the coefficients in W4,Y ukawa in (5.8) are not

arbitrarily large. Rather, as mentioned above, they are all naturally suppressed by the

factors presented in (5.10) and estimated in (5.16). Hence, if these factors are sufficiently

small the Higgs-induced flavor-changing neutral currents will be consistent with present

experimental data. Be that as it may, they may still be sufficiently large in some region of

parameter space to become relevant as the precision of this data is improved.

A complete analysis of these issues would require the computation of the perturbative

Kahler potential, the non-perturbative contributions to both the Kahler potential and

the superpotential, stabilization of all moduli, a complete exposition of supersymmetry

breaking and the explicit computation of electroweak and U(1)B−L symmetry breaking.

Although much of the theory required to accomplish this already exists, it is clearly a long

term project that we will not begin to attempt in this paper. Rather, we will explore

the relevant physics within the context of a toy model which contains most of the salient

features of our two Higgs pair vacua. To make this toy model as simple as possible, we

close this section by noting from Wµ in (5.3) that any non-vanishing vacuum expectation

values 〈φm̄〉, m̄ = 1, . . . , 9 will induce µ-terms of the form

Wµ = µ12H1H̄2 + µ21H2H̄1 + . . . , (5.19)

where

µ12 = λ̂m̄
12〈φm̄〉 , µ21 = λ̂m̄

21〈φm̄〉 . (5.20)

Exactly as in (5.15), these µ-coefficients must satisfy

µ12 , µ21 . MEW (5.21)

and, hence,

λ̂m̄
12

〈φm̄〉
Mc

∼ λ̂m̄
21

〈φm̄〉
Mc

.
MEW

Mc
≈ 10−14 . (5.22)
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Assuming the parameters λ̂m̄
12 and λ̂m̄

21 are of order unity, or, at least, not extremely small,

it follows from (5.16) that the contribution of the first m̄ = 1, . . . , 9 moduli to the induced

Yukawa couplings λ2
u(ν),ij and λ2

d(e),ij in (5.9) can be ignored. Since in this remainder

of this paper we are concerned only with possible Higgs-mediated flavor-changing neutral

currents, it is reasonable to simply drop all terms in the superpotential (5.18) containing

these nine moduli and only consider terms with the four moduli φm̃ with m̃ = 10, . . . , 13.

When constructing the toy model in the next section, we will base it on this truncated

supersymmetric theory.

6. A simplified model

Much of the technical difficulty in analyzing our two Higgs pair string vacua comes from the

N = 1 local supersymmetry. Great simplification is achieved, while retaining the relevant

physics, by choosing our toy model to be non-supersymmetric. We will also, for simplicity,

ignore the U(1)B−L gauge symmetry, since its inclusion would not alter our conclusions.

That is, we take our gauge group to be the SU(3)C × SU(2)L × U(1)Y of the standard

model. Hence, after electroweak symmetry breaking our vector boson spectrum consists of

three massive bosons, W±,Z and the massless photon A.

6.1 The spectrum

We begin by including all of the matter fields of the standard model. That is, the spectrum

contains three families of quark and lepton fermions, each family transforming as

Q =
(
3,2, 1

)
, u =

(
3,1, 4

)
, d =

(
3,1,−2

)
(6.1)

and

L =
(
1,2,−3

)
, e =

(
1,1,−6

)
, ν =

(
1,1, 0

)
(6.2)

under SU(3)C × SU(2)L × U(1)Y . We have displayed the quantum number 3Y for conve-

nience. Note from eq. (6.2) that each family contains a right-handed neutrino.

To complete the standard model spectrum, we add a complex Higgs scalar boson which

transforms as

H1 =
(
1,2, 3

)
(6.3)

under the gauge group. This naturally forms Yukawa terms with the “up” quark and

neutrino singlets, whereas the “down” quark and lepton singlets couple to H∗
1 This is

unlike the supersymmetric case, where one must introduce an independent H̄1 superfield.

So far, our toy model is exactly the standard model. However, to reflect the physics of

our two Higgs pair string vacua, we now make several important additions to the spectrum.

First, in analogy with the second Higgs-Higgs conjugate pair H2,H̄2, we introduce a second

complex Higgs boson field H2 (and, hence, H∗
2 ), transforming as

H2 =
(
1,2, 3

)
. (6.4)

Second, to play the role of the vector bundle moduli in the string vacua, we must add gauge

singlet scalar fields to the spectrum. Recall that there are thirteen such moduli fields, which
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break into two types; nine that are allowed by the (p, q) and [s, t] selection rules to form

cubic µ-terms with the Higgs fields and four that are not. As discussed above, the moduli

that form cubic µ-terms give a sub-dominant contribution to the Yukawa couplings to the

second Higgs pair and, for the purposes of this paper, can be ignored. Hence, we will not

introduce them into our toy model. On the other hand, those moduli that are disallowed

from forming cubic µ-terms give the dominant contribution to these Yukawa couplings and

must be part of the analysis. Therefore, we include them in the toy model. For simplicity,

we add a single, real scalar field φ to the spectrum to represent this type of field. As do

moduli, this transforms trivially as

φ =
(
1,1, 0

)
(6.5)

under the gauge group. Choosing this field to be complex and/or adding more than one

such field would greatly complicate the analysis without altering the conclusion.

6.2 Discrete symmetry

If this model had no further restrictions, one would generically find, after electroweak

symmetry breaking, flavor changing currents coupling with large coefficients to the neutral

Higgs bosons. These Higgs mediated flavor-changing neutral currents would easily violate

the experimental bounds on a large number of physical processes. As shown long ago [26],

this problem can be naturally resolved in two ways. First, one can introduce a discrete

symmetry which only allows Yukawa couplings of “up” quark and neutrino singlets to H1

and “down” quark and lepton singlets to H∗
2 . This is similar to having a single superfield

pair H1,H̄1 in a supersymmetric model and is not analogous to the physics of our two

Higgs pair vacua. For this reason, we follow the second method; that is, we introduce a

discrete symmetry that allows all quarks/leptons to couple to either H1 or H∗
1 , but forbids

any Yukawa couplings of quarks/leptons to H2 and H∗
2 at the classical level. Note that

this discrete symmetry is the field theory analogue of the “stringy” (p, q) and [s, t] Leray

selection rules for cubic Yukawa couplings in our two Higgs pair vacua.

There are several discrete symmetries that can be imposed on our toy model to imple-

ment the “decoupling” of H2 from quark/leptons. The simplest of these is a Z2 symmetry

defined as follows. Constrain the Lagranian to be invariant under the action

(Q̄, L̄) −→ (Q̄, L̄), (u, d, ν, e) −→ (u, d, ν, e) (6.6)

and

H1 −→ H1, H2 −→ −H2, φ −→ −φ. (6.7)

Then, up to operators of dimension 4 in the fields, the Lagrangian is restricted to be of the

form

L = Lkinetic + LYukawa + Lpotential, (6.8)

where Lkinetic is the canonically normalized gauged kinetic energy for all of the fields,

LYukawa = λ1
u,ijQ̄iH

∗
1uj + λ1

d,ijQ̄iH1dj + λ1
ν,ijL̄iH

∗
1νj + λ1

e,ijL̄iH1ej + hc (6.9)
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with i, j = 1, 2, 3 unrestrained and Lpotential = −V with

V = VF + VD + V (6.10)

such that

VF = λ1(H
∗
1 ·H2)(H

∗
2 ·H1) + λ2

(
(H∗

1 ·H2)(H
∗
1 ·H2) + (H∗

2 ·H1)(H
∗
2 ·H1)

)
(6.11)

VD = λ3|H1|4 + λ4|H2|4 + λ5|H1|2|H2|2 (6.12)

and

V = −µ2
1|H1|2 −µ2

2|H2|2 −
µ2

φ

2
φ2 + ρ3φ

(
H∗

1 ·H2 +H∗
2 ·H1

)
+φ2

(
γ1|H1|2 + γ2|H2|2

)
+ ρ4φ

4 .

(6.13)

Note that we have, for simplicity, taken λ2 and ρ3 to be real. For V to be hermitian,

all other coefficients in (6.11), (6.12) and (6.13) must be real. Finally, to ensure vacuum

stability we choose all coupling parameters to be positive.

In addition to the Yukawa couplings to H2 being disallowed, the potentials VF and VD

are also consistent with the potential energy of our two Higgs pair string vacuum. Specifi-

cally, the F -term contribution to the potential generated from the classical superpotential

Wµ in (5.3), disregarding the terms with φm̄ and setting H̄1, H̄2 to be H∗
1 , H∗

2 respectively

for the reasons discussed previously, contains precisely the same terms as in VF . They differ

only in that their coefficients are related in the supersymmetric case, whereas λ1, λ2 in VF

can be completely independent. Similarly, the D-term contribution to the supersymmetric

potential, again setting H̄1, H̄2 to be H∗
1 , H∗

2 , contains the same terms as in VD, albeit

with constrained coefficients. The coefficients λ3, λ4, λ5 in VD can be independent.

There are several other important, but more subtle, features of our two Higgs pair

string vacua that are captured in the remaining term V of the potential. First, recall

that in these string vacua quadratic mass terms do not appear for the Higgs fields since

they are zero modes of the Dirac operator. However, supersymmetry breaking and radiative

corrections are expected to induce non-vanishing vacuum expectation values for these fields.

This symmetry breaking is modeled in our Z2 toy theory by the appearance of such mass

terms in V with negative sign. To be consistent with electroweak breaking, we will choose

parameters µ1, µ2 and λi, i = 1, . . . , 5 so that

〈H1〉 ∼ 〈H2〉 ≈MEW (6.14)

Second, moduli fields must have a vanishing perturbative potential in string theory. How-

ever, non-perturbative effects and supersymmetry breaking are expected to induce a moduli

potential leading to stable, non-zero moduli expectation values. This is modeled in our toy

theory by the the pure φ2 and φ4 terms in V. Since φ represents moduli with potentially

large expectation values, we will choose parameters µφ and ρ4 so that

〈φ〉 . Mc . (6.15)

Finally, note that the Z2 symmetry allows mixed cubic and quartic φ-H couplings in V.

Such cubic terms cannot arise from a cubic superpotential. Quartic terms might occur,
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but are disallowed by the (p, q) and [s, t] selection rules of our string vacua. However,

both terms can be expected to arise in the string potential energy after supersymmetry

breaking, radiative corrections and non-perturbative effects are taken into account. To

ensure that these terms are consistent with electroweak symmetry breaking (6.14) and the

large modulus expectation value (6.15), one must choose coefficients ρ3 and γ1,γ2 to satisfy

ρ3 ∼
(
MEW

Mc

)
MEW , γ1, γ2 ∼

(
MEW

Mc

)2

. (6.16)

From the point of view of the toy model with Z2 discrete symmetry, this is fine-tuning of

the coefficients. However, it is a natural requirement if we want our toy model to reflect

the appropriate electroweak symmetry breaking in the two Higgs pair string vacua.

Of course, there is an infinite set of operators that are of order dimension five and

higher in the fields that are consistent with the Z2 discrete symmetry. Here, we will be

interested only in the dimension five operators

L5 = λ̃u,ij
φ

Mc
Q̄iH

∗
2uj + λ̃d,ij

φ

Mc
Q̄iH2dj + λ̃ν,ij

φ

Mc
L̄iH

∗
2νj + λ̃e,ij

φ

Mc
L̄iH2ej + hc (6.17)

related to flavor-changing neutral currents. Note that a non-vanishing vacuum expectation

value 〈φ〉 6= 0 will induce Yukawa couplings of the quarks/leptons to the the second Higgs

doublet H2 of the form

L5,Y ukawa = λ2
u,ijQ̄iH

∗
2uj + λ2

d,ijQ̄iH2dj + λ2
ν,ijL̄iH

∗
2νj + λ2

e,ijL̄iH2ej + hc , (6.18)

where

λ2
u(ν),ij = λ̃u(ν),ij

〈φ〉
Mc

, λ2
d(e),ij = λ̃d(e),ij

〈φ〉
Mc

. (6.19)

Since one expects 〈φ〉
Mc

< 1, the Yukawa couplings to the second Higgs H2 are naturally

smaller that the couplings to H1. To be consistent with the two Higgs pair string vacua,

it follows from (5.11) that we should choose

λ2
u(ν),ij ≪ λ1

u(ν),ij , λ2
d(e),ij ≪ λ1

d(e),ij . (6.20)

More specifically, from (5.9), (5.16) and the associated discussion one might expect

10−7λ1
u(ν),ij . λ2

u(ν),ij . 10−7 , 10−7λ1
d(e),ij . λ2

d(e),ij . 10−7 . (6.21)

6.3 The vacuum state

To find the vacuum of this theory, one has to find the local minima of the potential V . To

do this, define the component fields of the two Higgs doublets by

H1 =
1√
2

(
h1 + ih2

h3 + ih4

)
, H2 =

1√
2

(
h5 + ih6

h7 + ih8

)
(6.22)

It turns out that for a generic choice of coefficients there are several local minima. For

simplicity of the analysis, we choose the one most closely related to the standard model
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vacuum. The analytic expressions for the vacuum expectation values, as well as the scalar

mass eigenvalues and eigenstates, greatly simplify if we take all coefficients λi, i = 1, . . . , 5

to have the identical value λ. With this simplification, this local minimum is specified by

〈h3〉 =
µ1√
λ
, 〈h8〉 =

µ2√
λ
, 〈φ〉 =

µφ

2
√
ρ4

(6.23)

with all other expectation values vanishing. This vacuum clearly spontaneoously breaks

SU(3)C × SU(2)L ×U(1)Y −→ U(1)EM . Note that both Higgs doublets contribute to the

mass matrix of the vector bosons. Despite this, as mentioned above, the GIM mechanism

continues to apply at tree level and all Z mediated flavor-changing currents vanish.

The scalar mass matrix is easily evaluated and diagonalized in this vacuum. Expanding

around the vacuum expectation values in (6.23) and writing h3 = 〈h3〉+ h̄3, h8 = 〈h8〉+ h̄8

and φ = 〈φ〉 + φ̄, we find that the square of the mass eigenvalues and the associated

eigenstates are given respectively by

M2
h
′

1

= 0, M2
h
′

2

= 0,

M2
h
′

3

= 4µ2
1, M2

h
′

4

= 0,

M2
h
′

5

= 4(µ2
1 + µ2

2), M
2
h
′

6

= µ2
1 + µ2

2,

M2
h
′

7

= µ2
1 + µ2

2, M2
h
′

8

= 4µ2
2,

M2
φ′ = 2µ2

φ

(6.24)

and
h

′

1 = −µ̃1h4 + µ̃2h7, h
′

2 = µ̃1h1 − µ̃2h6,

h
′

3 = h̄3, h
′

4 = µ̃1h2 + µ̃2h5,

h
′

5 = µ̃2h4 + µ̃1h7, h
′

6 = −µ̃2h1 − µ̃1h6,

h
′

7 = −µ̃2h2 + µ̃1h5, h
′

8 = h̄8,

φ
′

= φ̄

(6.25)

where

µ̃i =
µi√

µ2
1 + µ2

2

i = 1, 2 . (6.26)

Clearly h
′

1, h
′

2 and h
′

4, which can be rotated into the charged eigenstates

G0 = h
′

1 , G± =
1√
2
(h

′

2 ± ıh
′

4) , (6.27)

are the Goldstone bosons. Since in the unitary gauge they will be absorbed into the

longitudinal components of the Z and W± vector bosons, we will henceforth ignore these

fields. The remaining Higgs scalars we group into charge eigenstates as

H0
1 = h

′

3 , H0
2 = h

′

5 , H0
3 = h

′

8 (6.28)

and

H± =
1√
2
(h

′

6 ± ıh
′

7) , (6.29)

with masses

M2
H0

1

= 4µ2
1 , M2

H0

2

= 4(µ2
1 + µ2

2) , M2
H0

3

= 4µ2
2 (6.30)
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and

M2
H± = µ2

1 + µ2
2 (6.31)

respectively. Since we are interested in flavor-changing neutral currents, we will ignore H±

and consider the currents coupling to H0
1, H0

2 and H0
3 only. The charge neutral field φ

′

does mediate a flavor-changing neutral current. However, it will naturally be suppressed

by the factor 〈H2〉
Mc

and, hence, is negligible.

6.4 Flavor-changing neutral currents

Having determined the vacuum state, we can expand the two Yukawa terms given in (6.9)

and (6.18) to find the fermion mass matrices and the Higgs induced flavor-changing neu-

tral interactions. For simplicity, we will always assume λ1,2
u(ν),ij and λ1,2

d(e),ij are real and

symmetric. First, consider the fermion mass matrices. For up-quarks, one finds

(
LYukawa + L5,Y ukawa

)
|up−mass = Ūi

(
λ1

u,ij√
2
〈h3〉 − i

λ2
u,ij√
2
〈h8〉

)
uj + hc . (6.32)

This can always be written in terms of a diagonal mass matrix and its eigenstates. For

example, the first term becomes

Ūi

(
λ1

u,ij√
2
〈h3〉 − i

λ2
u,ij√
2
〈h8〉

)
uj = ¯̃U iMdiag

u,ij ũj , (6.33)

which allows us to re-express

λ1
u,ij√
2
Ūiuj = ¯̃U i

Mdiag
u,ij

〈h3〉
ũj + i

λ2
u,ij√
2

〈h8〉
〈h3〉

¯̃Uiũj . (6.34)

Note that, in the last term, we have replaced Ūi, uj by the eigenstates ¯̃Ui, ũj . This is valid

to leading order since it follows from (6.14) and (6.20) that

λ2
u,ij〈h8〉 ≪ λ1

u,ij〈h3〉 . (6.35)

Similar expressions hold for the hermitian conjugate terms, down-quarks and the ν, e-

leptons.

One can now evaluate the flavor-changing neutral interactions. For up-quarks, we

find that

(
LYukawa + L5,Y ukawa

)
|up−neutral =

λ2
u,ij√
2

¯̃Ui

(
i
〈h8〉
〈h3〉

(h̄3 − ih4) + (h7 − ih̄8)
)
ũj + hc , (6.36)

where we have used expression (6.34) and dropped the flavor-diagonal Mdiag
u,ij term.

From (6.23), (6.25) and (6.28), one can write (6.36) in terms of the neutral Higgs eigen-

states. The result is

(
LYukawa + L5,Y ukawa

)
|up−neutral =

λ2
u,ij√
2

¯̃Ui

(
i
µ̃2

µ̃1
H0

1 +
1

µ̃1
H0

2 − iH0
3

)
ũj + hc . (6.37)
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Written in terms of the Dirac spinors

qu,i = Ũi ⊕ ũi , (6.38)

this becomes

(
LYukawa + L5,Y ukawa

)
|up−neutral =

λ2
u,ij√
2

(
− i

µ̃2

µ̃1
(q̄u,iγ

5qu,j)H0
1 +

+
1

µ̃1
(q̄u,iqu,j)H0

2 + i(q̄u,iγ
5qu,j)H0

3

)
. (6.39)

Similar expressions hold for the down-quarks and ν, e-leptons. Putting everything together,

we find that the flavor-changing neutral interactions are given by

(
LYukawa + L5,Y ukawa

)
|neutral = J 1H0

1 + J 2H0
2 + J 3H0

3 , (6.40)

where

J 1 = −i
λ2

u(ν),ij√
2

µ̃2

µ̃1
(q̄u(ν),iγ

5qu(ν),j) + i
λ2

d(e),ij√
2

µ̃2

µ̃1
(q̄d(e),iγ

5qd(e),j) , (6.41)

J 2 =
λ2

u(ν),ij√
2

1

µ̃1
(q̄u(ν),iqu(ν),j) +

λ2
d(e),ij√

2

1

µ̃1
(q̄d(e),iqd(e),j) , (6.42)

J 3 = i
λ2

u(ν),ij√
2

(q̄u(ν),iγ
5qu(ν),j) − i

λ2
d(e),ij√

2
(q̄d(e),iγ

5qd(e),j) . (6.43)

Note that these flavor-changing currents all vanish as λ2
u(ν),ij , λ

2
d(e),ij → 0, as they must.

6.5 Phenomenology

The most stringent bounds on Higgs mediated flavor changing neutral currents arise from

the experimental data on the mass splitting of neutral pseudoscalar F 0 − F̄ 0 meson eigen-

states. Theoretically, the mass difference ∆MF is given by

MF ∆MF = |〈F 0|Leff |F̄ 0〉| , (6.44)

where Leff is the low energy ∆F = 2 effective Lagrangian arising from a variety of pro-

cesses [27, 28]. First, there is a well-known contribution from the standard model part of

our simplified theory. In addition, we have terms rising from the flavor-changing neutral

Higgs vertices in (6.40)–(6.43). These lead to the tree-level graphs shown in figure 3 which,

at low energy, give extra contributions to the mass splitting. Using the results of [27],

we find that the Higgs mediated flavor changing neutral currents lead to an additional

contribution to the mass splitting given by

MF ∆MFCNC
F =

BF

8

(
λ2

(u,d),ij

)2
[
(±)

{(
µ2

µ1

)2 1

µ2
1

− 1

µ2
2

}
PF

ij +
1

µ2
1

SF
ij

]
, (6.45)

where

PF
ij = −f

2
FM

2
F

6

(
1 +

11M2
F

(mi +mj)2

)
, SF

ij =
f2

FM
2
F

6

(
1 +

M2
F

(mi +mj)2

)
(6.46)
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H0
1,H0

3

q
(
u

d
),j

q̄
(
u

d
),i

q
(
u

d
),j

q̄
(
u

d
),i

γ5 γ5

H0
2

q
(
u

d
),j

q̄
(
u

d
),i

q
(
u

d
),j

q̄
(
u

d
),i

(a) (b)

Figure 3: Feynman diagrams of the tree level contributions to neutral meson mixing mediated by

Higgs bosons. Note that graphs (a) and (b) involve pseudoscalar and scalar interactions respectively.

are associated with the pseudoscalar and scalar interaction graphs, figure 3(a) and figure

3(b), respectively. Here fF is the pseudoscalar decay constant, MF is the leading order

meson mass, mi is the mass of the i-th constituent quark and BF is the B-parameter of

the vacuum insertion approximation defined in [27]. The label (u, d) tells one to choose the

λ coefficient associated with the up-quark or down-quark content of the meson F and the

indices i, j, where i 6= j, indicate which two families compose F . In this paper, we simplify

the analysis by considering two natural limits of (6.45), each consistent with all previous

assumptions. The first limit is to take µ2 = µ1 ≈MEW . Expression (6.45) then simplifies to

MF ∆M
FCNC(I)
F =

BF

8

(
λ2

(u,d),ij

)2 1

M2
EW

SF
ij . (6.47)

As a second limit, let us assume that µ2 ≪ µ1 ≈ MEW . In this case, the µ1 contribution

is sub-dominant and (6.45) becomes

MF ∆M
FCNC(II)
F = ∓BF

8

(
λ2

(u,d),ij

)2 1

µ2
2

PF
ij , (6.48)

which can be written as

∆M
FCNC(II)
F = ∓∆M

FCNC(I)
F

(
M2

EW

µ2
2

)(PF
ij

SF
ij

)
. (6.49)

It follows from (6.46) that, in general,
|PF

ij |

SF
ij

∼ 10 and from our assumption that
M2

EW

µ2

2

≫ 1.

Hence,

|∆MFCNC(II)
F | ≫ ∆M

FCNC(I)
F . (6.50)

We will analyze the implications of both limits. Before proceeding, recall from (6.21) that

a natural range for the the Yukawa coefficients λ2
(u,d),ij is

10−7λ1
(u,d),ij . λ2

(u,d),ij . 10−7 . (6.51)

There are various ways to estimate the flavor non-diagonal coefficients λ1
(u,d),ij , i 6= j.

Here, we will simply assume each is of the same order of magnitude as the largest diagonal
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F 0 PF SF BF ∆MSM
F ∆MExp

F

K0 -27.5 2.5 0.75 1.4 − 4.6 × 10−15 3.51 × 10−15

B0
d -2.65 0.37 1 10−13 − 10−12 3.26 × 10−13

D0 -0.52 0.068 1 10−17 − 10−16 < 1.32 × 10−13

Table 1: Table of data pertinent to the calculation of ∆MF . The data in the first two columns

have dimensions GeV 4, those in column three are dimensionless while the entries in the last two

columns are in GeV .

Yukawa coupling of the u or d type corresponding to the i and j families. Other commonly

used estimates simply strengthen our conclusions.

In this paper, we will consider the F 0 mesons K0 = s̄d, B0
d = b̄d and D0 = c̄u, since

their mass mixings with their conjugates are the best measured. The values for PF
ij , SF

ij

and BF for each of these mesons are presented in table 1. In addition, the last two columns

of table 1 contain the theoretical standard model contribution and the experimental value

of ∆MF respectively. First consider K0 − K̄0 mixing. In the limit that µ2 = µ1 ≈ MEW ,

it follows from (6.47), table 1 and MK0 = .497GeV that

∆M
FCNC(I)
K ≈ 4.72 × 10−5(λ2

d,12)
2GeV . (6.52)

Assuming that λ1
d,12 ∼ λ1

s ∼ 10−4, the range (6.51) becomes

10−11 . λ2
d,12 . 10−7 (6.53)

and, hence,

4.72 × 10−27GeV . ∆M
FCNC(I)
K . 4.72 × 10−19GeV . (6.54)

This sits comfortably below the upper bound

∆MFCNC
K . 10−15GeV (6.55)

obtained using the K0 entries in the last two columns of table 1. Next, consider the second

limit where µ2 ≪ µ1 ≈ MEW . In this case, we know from (6.50) that this choice of

parameters will come closer to saturating the upper bound. Using (6.49) and table 1 we

find that

|∆MFCNC(II)
K | = ∆M

FCNC(I)
K

(
1.1 × 105GeV 2

µ2
2

)
(6.56)

If, for example, we take

µ2 ≈ 7GeV , (6.57)

corresponding to an H0
3 mass of 14GeV , then it follows from (6.54) and (6.56) that

10−23GeV . |∆MFCNC(II)
K | . 10−15GeV . (6.58)

The choice of µ2 in (6.57) is purely illustrative, chosen so that the Higgs mediated flavor

changing currents can induce K0 mixing of the same order as the experimental data. A
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more detailed study of our theory would be required to determine if a neutral Higgs boson

can be this light relative to the electroweak scale. Of course, if the mass of H0
3 is larger,

its contribution to neutral meson mixing would rapidly decrease. We conclude that if λ2
d,12

saturates its upper bound of 10−7 and the neutral Higgs H0
3 is sufficiently light, then the

contribution of the Higgs mediated flavor-changng neutral currents can play a measurable

role in K0 − K̄0 mixing.

Next, let us discuss B0
d − B̄0

d mixing. In the limit that µ2 = µ1 ≈ MEW , it follows

from (6.47), table 1 and MB0

d
= 5.28GeV that

∆M
FCNC(I)
Bd

≈ .876 × 10−6(λ2
d,13)

2GeV . (6.59)

Assuming that λ1
d,13 ∼ λ1

b ∼ 10−2, the range (6.51) becomes

10−9 . λ2
d,13 . 10−7 (6.60)

and, hence,

.876 × 10−24GeV . ∆M
FCNC(I)
Bd

. .876 × 10−20GeV . (6.61)

This contribution is well below the upper bound of

∆MFCNC
Bd

. 10−13GeV (6.62)

obtained using the B0
d entries in the last two columns of table 1. Next, consider the second

limit where µ2 ≪ µ1 ≈ MEW . In this case, we know from (6.50) that this choice of

parameters will come closer to saturating the upper bound. Using (6.49) and table 1 we

find that

|∆MFCNC(II)
Bd

| = ∆M
FCNC(I)
Bd

(
7.16 × 104GeV 2

µ2
2

)
(6.63)

If we take, for example,

µ2 ≈ 7GeV , (6.64)

thus saturating the upper bound in the K0 case, then it follows from (6.61) and (6.63) that

1.28 × 10−21GeV . |∆MFCNC(II)
Bd

| . 1.28 × 10−17GeV . (6.65)

We conclude that even if λ2
d,13 saturates its upper bound of 10−7 and the neutral Higgs

H0
3 is sufficiently light to saturate the upper bound in the K0 case, the contribution of the

Higgs mediated flavor-changing neutral currents to B0
d − B̄d

0
mixing remains well below

the presently measured upper bound.

Finally, consider the D0 − D̄0 case. If we assume that λ1
u,12 ∼ λ1

c ∼ 5 × 10−3, the

range (6.51) becomes

5 × 10−10 . λ2
u,12 . 10−7 . (6.66)

It follows from this, (6.47), table 1 and MD0 = 1.86GeV that in the limit that µ1 = µ2 ≈
MEW

1.14 × 10−25GeV . ∆M
FCNC(I)
D . 4.56 × 10−21GeV , (6.67)
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well below the upper bound of

∆MFCNC
D . 10−13GeV (6.68)

obtained using the D0 entries in the last two columns of table 1. Finally, consider the

second limit where µ2 ≪ µ1 ≈ MEW . In this case, using (6.49), table 1, (6.67) and

µ2 ≈ 7GeV , we obtain

1.77 × 10−22GeV . |∆MFCNC(II)
D | . 7.11 × 10−18GeV . (6.69)

We conclude that even if λ2
u,12 saturates its upper bound of 10−7 and the neutral Higgs

H0
3 is sufficiently light to saturate the upper bound in the K0 case, the contribution of the

Higgs mediated flavor-changing neutral currents to D0− D̄0 mixing remains well below the

presently measured upper bound.
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